Numerical Solution of a Singularly Perturbed Problem on a Circular Domain
https://doi.org/10.18255/1818-1015-2016-3-349-356
Abstract
We consider a singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and parameter-uniform under certain compatibility constraints. Numerical results are presented to illustrate the performance of the numerical method when these constraints are not imposed on the data.
About the Authors
A. F. HegartyRussian Federation
Department of Mathematics and Statistics
E. O’Riordan
Russian Federation
School of Mathematical Sciences
References
1. R. K. Dunne, E. O’ Riordan and G. I. Shishkin, “Fitted mesh numerical methods for singularly perturbed elliptic problems with mixed derivatives”, IMA J. Num. Anal., 29 (2009), 712–730.
2. P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’ Riordan, G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC Press, Boca Raton, U.S.A., 2000.
3. A. F. Hegarty and E. O’Riordan, “Parameter-uniform numerical method for singularly perturbed convection-diffusion problem on a circular domain”, (submitted for publication).
4. Y. Hong, C.-Y. Jung, R. Temam, “On the numerical approximations of stiff convection-diffusion equations in a circle”, Numer. Math., 127:2 (2014), 291–313.
5. C. -Y. Jung and R. Temam, “Convection-diffusion equations in a circle: The compatible case”, J. Math. Pures Appl., 96 (2011), 88–107.
6. C. -Y. Jung and R. Temam, “Singular perturbations and boundary layer theory for convection-diffusion equations in a circle: the generic noncompatible case”, SIAM J. Math. Anal., 44:6 (2012), 4274–4296.
7. C. -Y. Jung and R. Temam, “Boundary layer theory convection-diffusion equations in a circle”, Russ. Math. Surveys, 69:3 (2014), 435–480.
8. E. O’Riordan and G. I. Shishkin“A technique to prove parameter–uniform convergence for a singularly perturbed convection–diffusion equation”, J. Comp. Appl. Math., 206 (2007), 136–145.
9. G. I. Shishkin, Discrete approximation of singularly perturbed elliptic and parabolic equations, Russian Academy of Sciences, Ural section, Ekaterinburg, 1992.
Review
For citations:
Hegarty A.F., O’Riordan E. Numerical Solution of a Singularly Perturbed Problem on a Circular Domain. Modeling and Analysis of Information Systems. 2016;23(3):349-356. https://doi.org/10.18255/1818-1015-2016-3-349-356