Preview

Modeling and Analysis of Information Systems

Advanced search

Numerical Solution of a Singularly Perturbed Problem on a Circular Domain

https://doi.org/10.18255/1818-1015-2016-3-349-356

Abstract

We consider a singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and parameter-uniform under certain compatibility constraints. Numerical results are presented to illustrate the performance of the numerical method when these constraints are not imposed on the data.

About the Authors

A. F. Hegarty
University of Limerick, Ireland
Russian Federation

Department of Mathematics and Statistics



E. O’Riordan
Dublin City University, Ireland
Russian Federation

School of Mathematical Sciences



References

1. R. K. Dunne, E. O’ Riordan and G. I. Shishkin, “Fitted mesh numerical methods for singularly perturbed elliptic problems with mixed derivatives”, IMA J. Num. Anal., 29 (2009), 712–730.

2. P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’ Riordan, G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC Press, Boca Raton, U.S.A., 2000.

3. A. F. Hegarty and E. O’Riordan, “Parameter-uniform numerical method for singularly perturbed convection-diffusion problem on a circular domain”, (submitted for publication).

4. Y. Hong, C.-Y. Jung, R. Temam, “On the numerical approximations of stiff convection-diffusion equations in a circle”, Numer. Math., 127:2 (2014), 291–313.

5. C. -Y. Jung and R. Temam, “Convection-diffusion equations in a circle: The compatible case”, J. Math. Pures Appl., 96 (2011), 88–107.

6. C. -Y. Jung and R. Temam, “Singular perturbations and boundary layer theory for convection-diffusion equations in a circle: the generic noncompatible case”, SIAM J. Math. Anal., 44:6 (2012), 4274–4296.

7. C. -Y. Jung and R. Temam, “Boundary layer theory convection-diffusion equations in a circle”, Russ. Math. Surveys, 69:3 (2014), 435–480.

8. E. O’Riordan and G. I. Shishkin“A technique to prove parameter–uniform convergence for a singularly perturbed convection–diffusion equation”, J. Comp. Appl. Math., 206 (2007), 136–145.

9. G. I. Shishkin, Discrete approximation of singularly perturbed elliptic and parabolic equations, Russian Academy of Sciences, Ural section, Ekaterinburg, 1992.


Review

For citations:


Hegarty A.F., O’Riordan E. Numerical Solution of a Singularly Perturbed Problem on a Circular Domain. Modeling and Analysis of Information Systems. 2016;23(3):349-356. https://doi.org/10.18255/1818-1015-2016-3-349-356

Views: 971


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)