Probabilistic Analysis of Tournament Organization Systems
https://doi.org/10.18255/1818-1015-2016-4-492-507
Abstract
In this paper a criteria of comparison of different tournament organization systems in sporting contests is offered; the criteria uses the probability of winning the fairly strongest player. Two probabilistic models have been analyzed. Calculating formulas for estimating the probability and probability density of score points gained by one or another player were obtained. Some really used tournament systems were analyzed with the stochastic modeling method. The available results also provide an order of objects presenting to experts while organizating the examination by paired comparison. An analytical estimation of probability of tournament results (or pared comparison) was obtained. In many cases it allows to avoid a time-consuming procedure of sorting out possible variants.
About the Authors
A. M. TsirlinRussian Federation
Tsirlin Anatoly Michailovich, Prof
Program Systems Institute of RAS Petra 1 str., 4a, Veskovo Jaroslavskoy, 152020
Al. A. Akhremenkov
Russian Federation
Akhremenkov Alexander Alexandrovich, PhD
Program Systems Institute of RAS Petra 1 str., 4a, Veskovo Jaroslavskoy, 152020
References
1. Gnedenko B. V., Kurs teorii veroyatnostey, Nauka, M., 1988, (in Russian).
2. Erdesh P., Spenser Dzh., Veroyatnostnye metody v kombinatorike, Mir, M., 1976, (in Russian).
3. Erdesh P., Mun Dzh. V., “O mnozhestve soglasovannykh dug v turnire”, Teoriya grafov, Mir, M., 1976, 160–162, (in Russian).
4. Alspach B., Mason D.W., Pullman N. J., “Path numbers of tournaments”, J. of Comb Theory, 20:3 (1976), 222–228. DOI: 10.1016/0095-8956(76)90013-7.
5. Daniels H. E., “Round-robin touranmet scores”, Biomentrika, 56:2 (1969), 295–299. DOI: 10.1093/biomet/56.2.295.
6. Ford L. R., Jahnson S. M., “A tournament problem”, Am. Math. Monthly, 66 (1959), 387– 389. DOI: 10.2307/2308750.
7. Freund J. E., “Round Robin Mathematics”, Am. Math. Monthly, 63 (1956), 112–114. DOI: 10.2307/2306437.
8. Hartigan J. A., “Probabilistic competition of knockout tournament”, Ann. MAth. Statist., 37 (1966), 495–503. DOI: 10.1214/aoms/1177699533.
9. Moon J.W. Topics on tournaments in graph theory. Dover Publications, Inc., Meniola, NY, 2015.
10. Narayana T. V., Bent B. H., “Computation of the number of score sequence in round-robin tournamets”, Canad. Math. Bull, 7 (1964), 133–136. DOI: 10.4153/CMB-1964-015-1.
11. Narayana T. V., Zidek J., “Statistical inference in random tournaments”, Rev. Roum. Math. Pures et Appl., 10 (1969), 1563–1576.
12. Searls D. T., “On the probability of winning with different tournament procedures”, J. Amer. Statist. Assoc., 58:304 (1963), 1064–1081. DOI: 10.1080/01621459.1963.10480688.
13. Thompson G. L., Lectures on game theory, Markov chains and related topics, Sandia Corporation Monograph, 1958.
14. David H. A., The Method of paired comparisons, London, 1976.
15. David H. A., “Ranking the Players in a Round Robin Tournament”, Rev. Int. Statist. Inst., 39, 1971, 137–147.
16. David H. A., “Tournaments and paired comparisons”, 46 (1959), 139–149.
17. Glason J. R., Haplerin S. A., “A paired comparisons model for Round-Robin experiments”, Psychomentika, 40:4 (1975), 433–454. DOI: 10.1007/BF02291548.
18. Glenn W. A., “A comparison for the effectiveness of tournaments”, Biomentrika, 47 (1960), 253–262. DOI: 10.1093/biomet/47.3-4.253.
19. Bruk B. N., Burkov V. N., “Metody ekspertnykh otsenok v zadachakh uporyadochivaniya obektov”, Tekhn. kibernetika, 1972, 29–39, (in Russian).
20. Khirshman I. I., Uidder D. V., Preobrazovaniya tipa svertki, Mir, M., 1958, (in Russian).
21. Ditkin V. A., Kuznetsov P.I., Spravochnik po operatsionnomu ischisleniyu: Osnovy teorii i tablitsy formul, Gosudarstvennoe izdatelstvo tekhnikoteoreticheskoy literatury, M., 1951, (in Russian).
22. Venttsel E. S., Issledovanie operatsiy, Sovetskoe radio, M., 1972, (in Russian).
Review
For citations:
Tsirlin A.M., Akhremenkov A.A. Probabilistic Analysis of Tournament Organization Systems. Modeling and Analysis of Information Systems. 2016;23(4):492-507. (In Russ.) https://doi.org/10.18255/1818-1015-2016-4-492-507