Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
https://doi.org/10.18255/1818-1015-2016-5-595-602
Abstract
Recall the Lebesgue's singular function. We define a Lebesgue's singular function \(L(t)\) as the unique continuous solution of the functional equation
$$
L(t) = qL(2t) +pL(2t-1),
$$
where \(p,q>0\), \(q=1-p\), \(p\ne q\).
The moments of Lebesque' singular function are defined as
$$
M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots
$$
The main result of this paper is
$$
M_n =
n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right),
$$
where
$$
\tau(x) =
\frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.Li_{z}\left(-\frac{q}{p}\right)\right|_{z=1}
%+\\
\\
+\frac1{\ln 2}\sum_{k\ne0}
\Gamma(z_k)Li_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},
$$
$$
z_k = \frac{2\pi ik}{\ln 2}, \ \ k\ne 0.
$$
The proof is based on analytic techniques such as the poissonization and the Mellin transform.
About the Author
E. A. TimofeevRussian Federation
ScD, professor
References
1. Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008.
2. Lomnicki Z., Ulam S. E., “Sur la theorie de la mesure dans les espaces combinatoires et son application au calcul des probabilites. I. Variables independantes”, Fundamenta Mathematicae, 23:1 (1934), 237–278.
3. NIST Handbook of Mathematical Functions, ed. Olver F.W.J., Cambridge University Press, 2010.
4. Salem R., “On some singular monotonic functions which are strictly increasing,”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439.
5. De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298.
6. Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58.
7. Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley & Sons, New York, 2001.
8. Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994.
9. Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, More Special Functions, 3, Gordon & Breach Sci., New York, 1990.
10. Timofeev E. A., “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269.
11. Timofeev E. A., “Asymptotic Formula for the Moments of Lebesgue’s Singular Function”, Modeling and Analysis of Information Systems, 22:5 (2015), 723–730, (in Russian).
Review
For citations:
Timofeev E.A. Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function. Modeling and Analysis of Information Systems. 2016;23(5):595-602. (In Russ.) https://doi.org/10.18255/1818-1015-2016-5-595-602