Asymptotic Integration of a Certain Second-Order Linear Delay Differential Equation
https://doi.org/10.18255/1818-1015-2016-5-635-656
Abstract
About the Author
P. N. NesterovRussian Federation
PhD
References
1. Bellman R., Stability theory of differential equations, McGraw-Hill, New York, 1953.
2. Burd V. Sh., Karakulin V. A., “On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients”, Math. Notes, 64:5 (1998), 571–578.
3. Its A. R., “The asymptotic behavior of solutions to the radial Schr¨odinger equation with oscillating potential at energy zero”, Selecta Math. Soviet, 3 (1984), 291–300.
4. Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
5. Kondrat’ev V. A., “Jelementarnyj vyvod neobhodimogo i dostatochnogo uslovija nekoleblemosti reshenij linejnogo differencialnogo uravnenija vtorogo porjadka”, UMN, 12:3(75) (1957), 159–160, (in Russian).
6. Levin A. Yu., “Integralnyj kriterij neoscilljacionnosti dlja uravnenija ¨x + q(t)x = 0”, UMN, 20:2(122) (1965), 244–246, (in Russian).
7. Levin A. J., “Behavior of the solutions of the equation ¨x + p(t) ˙x + q(t)x = 0 in the nonoscillatory case”, Mathematics of the USSR — Sbornik, 4:1 (1968), 33–55.
8. Nesterov P. N., “Construction of the asymptotics of the solutions of the onedimensional Schr¨odinger equation with rapidly oscillating potential”, Math. Notes, 80:2 (2006), 233–243.
9. Nesterov P. N., “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients”, Differ. Equ., 43:6 (2007), 745–756.
10. Agarwal R. P., Bohner M., Li W.-T., Nonoscillation and oscillation: theory for functional differential equations, Dekker, New York, 2004.
11. Berezansky L., Braverman E., “Some oscillation problems for a second order linear delay differential equation”, J. Math. Anal. Appl., 220:2 (1998), 719–740.
12. Bodine S., Lutz D. A., “Asymptotic analysis of solutions of a radial Schr¨odinger equation with oscillating potential”, Math. Nachr., 279:15 (2006), 1641–1663.
13. Burd V., Nesterov P., “Asymptotic behaviour of solutions of the difference Schro¨odinger equation”, J. Difference Equ. Appl., 17:11 (2011), 1555–1579.
14. Cassell J. S., “The asymptotic behaviour of a class of linear oscillators”, Quart. J. Math., 32:3 (1981), 287–302.
15. Cassell J. S., “The asymptotic integration of some oscillatory differential equations”, Quart. J. Math., 33:2 (1982), 281–296.
16. Eastham M. S. P., The asymptotic solution of linear differential systems, Clarendon Press, Oxford, 1989.
17. Erbe L. H., Kong Q., Zhang B. G., Oscillation theory for functional differential equations, Dekker, New York, 1995.
18. Ladde G. S., Lakshmikantham V., Zhang B. G., Oscillation theory of differential equations with deviating arguments, Dekker, New York-Basel, 1987.
19. Nesterov P., “Asymptotic integration of functional differential systems with oscillatory decreasing coefficients: a center manifold approach”, Electron. J. Qual. Theory Differ. Equ., 2016, № 33, 1–43.
20. Opluˇstil Z., Sremr J., “Some oscillation criteria for the second-order linear delay differential equation”, Math. Bohem., 136:2 (2011), 195–204.
21. Opluˇstil Z., Sremr J., “Myshkis type oscillation criteria for second-order linear delay differential equations”, Monatsh. Math., 178:1 (2015), 143–161.
Review
For citations:
Nesterov P.N. Asymptotic Integration of a Certain Second-Order Linear Delay Differential Equation. Modeling and Analysis of Information Systems. 2016;23(5):635-656. (In Russ.) https://doi.org/10.18255/1818-1015-2016-5-635-656