Preview

Modeling and Analysis of Information Systems

Advanced search

Asymptotic of Eigenvalues of Periodic and Antiperiodic Boundary Value Problem for Second Order Differential Equations

https://doi.org/10.18255/1818-1015-2017-1-13-30

Abstract

The article considers asymptotic distribution of characteristic constants in periodic and antiperiodic boundary-value problems for the second-order linear equation with periodic coefficients. It allows getting asymptotics of stability and instability zones of solutions. It was shown that in the absence of turning points (\(r(t) > 0\)) the instability zones lengths converge to zero with their number increasing, and the stability zones lengths converge to a positive quantity. The situation, when (\(r(t) \geqslant 0\)) and there are zeroes \(r(t),\) results in the fact that the lengths of stability and instability zones have a finite nonzero bound at an unbounded increase of the number of the corresponding zone. But if the function \(r(t)\) is alternating, the lengths of all stability zones converge to zero, and the lengths of instability zones converge to some finite quantities. These conclusions allowed to formulate a series of interesting criteria of stability and instability of solutions of the second-order equation with periodic coefficients. The results given are illustrated by a substantial example. The methods of investigation are based on a detailed study of the so-called special standard equations and the consequent reduction of original equations to any particular type of standard equations. Here, asymptotic methods of the theory of singular perturbance, as well as certain properties of a series of special functions are used.

About the Author

Sergey A. Kashchenko
P.G. Demidov Yaroslavl State University; National Research Nuclear University MEPhI
Russian Federation

doctor of science, professor, 14 Sovetskaya str., Yaroslavl 150003;

Kashirskoye shosse, 31, Moscow, 115409



References

1. Yakubovich V. A., Starzhinskiy V. M., Lineynye differentsialnye uravneniya s periodicheskimi koeffitsientami, Nauka, M., 1972, (in Russian).

2. Lyapunov A. M., “Ob odnom lineynom differentsialnom uravnenii vtorogo poryadka”, Sobr. soch., 2, Izd-vo AN SSSR, M.; L., 1956., 401–403, (in Russian).

3. Lyapunov A. M., “Ob odnom transtsendentnom uravnenii i o lineynykh differentsialnykh uravneniyakh vtorogo poryadka s periodicheskimi koeffitsientami”, Sobr. soch., 2, Izd-vo AN SSSR, M.; L., 1956, 404–406, (in Russian).

4. Smirnov V. I., “Nauchnyy arkhiv A.M. Lyapunova po voprosam ustoychivosti i teorii obyknovennykh differentsialnykh uravneniy”, Tr. III Vsesoyuzn. matem. sezda, I, Izd-vo AN SSSR, M., 1956, 236, (in Russian).

5. Koddington E., Levinson I., Teoriya obyknovennykh differentsialnykh uravneniy, IL, M., 1958, (in Russian).

6. Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znacheniy dlya nekotorykh osobykh vidov differentsialnykh uravneniy vtorogo poryadka”, UMN, 7, 6:52 (1952), 3–96, (in Russian).

7. Tikhonov A. N., “Systems of differential equations containing small parameters in the derivatives”, Mat. Sb., 31:3 (1952), 575–586.

8. Butuzov V. F., Vasil’eva A. B., Fedoryuk M. V., “Asymptotic methods in the theory of ordinary differential equations”, USSR Comput. Math. Math. Phys., 8 (1970), 1–82.

9. Vasil’eva A. B., Butuzov V. F., Asimptoticheskie razlozheniya resheniy singulyarno vozmushchennykh uravneniy, Nauka, M., 1973, (in Russian).

10. Kreyn M.G., “Osnovnye polozheniya teorii λ- zon ustoychivosti kanonicheskikh sistem lineynykh differentsialnykh uravneniy s periodicheskimi koeffitsientami”, Sbornik Pamyati A.A. Andronova, Izd-vo AN SSSR, M., 1955, (in Russian).

11. Kashchenko S. A., “Predelnye znacheniya sobstvennykh chisel pervoy kraevoy zadachi dlya singulyarno vozmushchennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Vest. Yarosl. un-ta, 10, 1974, 3–39, (in Russian).

12. Kashchenko S. A., “Asimptotika sobstvennykh chisel pervoy kraevoy zadachi dlya singulyarno vozmushchennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Vest. Yarosl. unta, 10, 1974, 40–64, (in Russian).

13. Kashchenko S. A., “Asymptotics of Eigenvalues of the First Boundary-Value Problem for Singularly Perturbed Second-Order Differential Equation with Turning Points”, Automatic Control and Computer Sciences, 50:7 (2016), 636–656.

14. Kashchenko S. A., “Asimptotika sobstvennykh znacheniy periodicheskoy i antiperiodicheskoy kraevykh zadach dlya singulyarno vozmushchennykh differentsialnykh uravneniy vtorogo poryadka s tochkami povorota”, Vestnik Yarosl. un-ta, 13, 1975, 20–83, (in Russian).

15. Kashchenko S. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znacheniy periodicheskoy i antiperiodicheskoy kraevoy zadachi dlya differentsial’nykh uravneniy vtorogo poryadka s tochkami povorota”, Issled. po ustoych. i teorii koleb., YarGU, Yaroslavl, 1976, 95–113, (in Russian).


Review

For citations:


Kashchenko S.A. Asymptotic of Eigenvalues of Periodic and Antiperiodic Boundary Value Problem for Second Order Differential Equations. Modeling and Analysis of Information Systems. 2017;24(1):13-30. (In Russ.) https://doi.org/10.18255/1818-1015-2017-1-13-30

Views: 1192


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)