New Estimates of Numerical Values Related to a Simplex
https://doi.org/10.18255/1818-1015-2017-1-94-110
Abstract
About the Authors
Mikhail V. NevskiiRussian Federation
doctor of science,
14 Sovetskaya str., Yaroslavl 150003
Alexey Yu. Ukhalov
Russian Federation
PhD,
14 Sovetskaya str., Yaroslavl 150003
References
1. Klimov V. S., Ukhalov A. Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki, Yaroslavl: P. G. Demidov Yaroslavl State University, 2014, (in Russian).
2. Nevskij M. V., “Inequalities for the norms of interpolating projections”, Modeling and Analysis of Information Systems, 15:3 (2008), 28–37, (in Russian).
3. Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43, (in Russian).
4. Nevskii M. V., “On a property of n-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555.
5. Nevskii M. V., “On geometric charasteristics of an n-dimensional simplex”, Modeling and Analysis of Information Systems, 18:2 (2011), 52–64, (in Russian).
6. Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, Yaroslavl: P. G. Demidov Yaroslavl State University, 2012, (in Russian).
7. Nevskii M. V., “Computation of the longest segment of a given direction in a simplex”, Journal of Math. Sciences, 203:6 (2014), 851–854.
8. Nevskii M. V., Ukhalov A. Yu., “On numerical charasteristics of a simplex and their estimates”, Modeling and Analysis of Information Systems, 23:5 (2016), 603–619, (in Russian).
9. Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets) – Toronto – London, 1967.
10. Hudelson M., Klee V., Larman D., “Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598.
11. Lassak M., “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462.
12. Mangano S., Mathematica cookbook, O’Reilly Media Inc., Cambridge, 2010.
13. Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312.
14. Scott P. R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362.
15. Scott P. R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333.
Review
For citations:
Nevskii M.V., Ukhalov A.Yu. New Estimates of Numerical Values Related to a Simplex. Modeling and Analysis of Information Systems. 2017;24(1):94-110. (In Russ.) https://doi.org/10.18255/1818-1015-2017-1-94-110