Preview

Modeling and Analysis of Information Systems

Advanced search

Polyhedral Characteristics of Balanced and Unbalanced Bipartite Subgraph Problems

https://doi.org/10.18255/1818-1015-2017-2-141-154

Abstract

We study the polyhedral properties of three problems of constructing an optimal biclique in a bipartite graph. In the first problem we consider a balanced biclique with the same number of vertices in both parts and arbitrary edge weights. In the other two problems it is required to find maximum or minimum unbalanced bicliques with a fixed number of vertices and non-negative edges. All three problems are established to be NP-hard. We study the polytopes and the cone decompositions of these problems and their 1-skeletons. We describe the adjacency criterion in the 1-skeleton of the balanced biclique polytope. Clique number of 1-skeleton is estimated from below by a superpolynomial function. For both unbalanced biclique problems we establish the superpolynomial lower bounds on the clique numbers of the graphs of non-negative cone decompositions. These values characterize the time complexity in a broad class of algorithms based on linear comparisons.

About the Authors

Vladimir Bondarenko
P.G. Demidov Yaroslavl State University
Russian Federation

doctor of science, professor

14 Sovetskaya str., Yaroslavl 150003, Russia



Andrei Nikolaev
P.G. Demidov Yaroslavl State University
Russian Federation

PhD

14 Sovetskaya str., Yaroslavl 150003, Russia



Dzhambolet Shovgenov
P.G. Demidov Yaroslavl State University
Russian Federation

graduate student

14 Sovetskaya str., Yaroslavl 150003, Russia



References

1. Бондаренко В.А., “Неполиномиальная нижняя оценка сложности задачи коммивояжера в одном классе алгоритмов”, Автоматика и телемеханика, 9 (1983), 45– 50; [Bondarenko V. A., “Nonpolynomial lowerbound of the traveling salesman problem complexety in one class of algorithms”, Automation and remote control, 44:9 (1983), 1137– 1142.]

2. Бондаренко В.А., Максименко А.Н., Геометрические конструкции и сложность в комбинаторной оптимизации, ЛКИ, М., 2008, 184 с.; [Bondarenko V.A., Maksimenko A. N., Geometricheskie konstruktsii i slozhnost v kombinatornoy optimizatsii, LKI, Moscow, 2008, (in Russian).]

3. Бондаренко В.А., Николаев А.В., “Комбинаторно-геометрические свойства задачи о разрезе”, Доклады Академии наук, 452:2 (2013), 127–129; [Bondarenko V. A., Nikolaev A. V., “Combinatorial and Geometric Properties of the Max-Cut and Min-Cut Problems”, Doklady Mathematics, 88:2 (2013), 516–517.]

4. Бондаренко В.А., Николаев А.В., Шовгенов Д.А., “Полиэдральные графы задач об остовных деревьях при дополнительных ограничениях”, Моделирование и анализ информационных систем, 22:4 (2015), 453–463; [Bondarenko V.A., Nikolaev A. V., Shovgenov D. A., “1-Skeletons of the Spanning Tree Problems with Additional Constraints”, Modeling and Analysis of Information Systems, 22:4 (2015), 453– 463, (in Russian).]

5. Максименко А.Н., “Комбинаторные свойства многогранника задачи о кратчайшем пути”, Ж. вычисл. матем. и матем. физ., 44:9 (2004), 1693–1696; [Maksimenko A.N., “Combinatorial properties of the polyhedron associated with the shortest path problem”, Comput. Math. Math. Phys., 88:2 (2013), 1611–1614.]

6. Apollonio N., Simeone B., “The maximum vertex coverage problem on bipartite graphs”, Discrete Applied Mathematics, 165 (2014), 37–48.

7. Arbib C., Mosca R., “Polynomial algorithms for special cases of the balanced complete bipartite subgraph problem”, Journal of Combinatorial Mathematics and Combinatorial Computing, 39 (1999), 3–22.

8. Bondarenko V., Nikolaev A., “On Graphs of the Cone Decompositions for the Min-Cut and Max-Cut Problems”, International Journal of Mathematics and Mathematical Sciences, 2016 (2016), 6 pages, Article ID 7863650.

9. Cheng Y., Church G. M., “Biclustering of expression data”, Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 2000, 93–103.

10. Diestel R., Graph Theory, Springer-Verlag Berlin Heidelberg, 2010, 410 pp.

11. Feige U., Kogan S., Hardness of approximation of the Balanced Complete Bipartite Subgraph problem. Tech. Rep. MCS04-04, Dept. of Comp. Sci. and Appl. Math., The Weizmann Inst. of Science, 2004.

12. Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP- Completeness, W. H. Freeman & Co., New York, NY, USA, 1979, 340 pp.

13. GroЁtschel M., Lovasz L., Schrijver A., Geometric Algorithms and Combinatorial Optimization, Springer–Verlag Berlin Heidelberg, 1993, 362 pp.

14. Johnson D. S., “The NP-completeness column: An ongoing guide”, Journal of Algorithms, 8:3 (1987), 438–448.

15. Joret G., Vetta A., “Reducing the rank of a matroid”, Discrete Mathematics & Theoretical Computer Science, 17:2 (2015), 143–156.

16. Hopcroft J. E., Karp R. M., “An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs”, SIAM Journal on Computing, 2:4 (1973), 225–231.

17. Mubayi D., Tura`n G., “Finding bipartite subgraphs efficiently”, Information Processing Letters, 110:5 (2010), 174–177.

18. Ravi S. S., Lloyd E. L., “The complexity of near-optimal programmable logic array folding”, SIAM Journal on Computing, 17:4 (1988), 696–710.


Review

For citations:


Bondarenko V., Nikolaev A., Shovgenov D. Polyhedral Characteristics of Balanced and Unbalanced Bipartite Subgraph Problems. Modeling and Analysis of Information Systems. 2017;24(2):141-154. (In Russ.) https://doi.org/10.18255/1818-1015-2017-2-141-154

Views: 11011


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)