On the Tate Conjectures for Divisors on a Fibred Variety and on its Generic Scheme Fibre in the Case of Finite Characteristic
https://doi.org/10.18255/1818-1015-2017-2-205-214
Abstract
We investigate interrelations between the Tate conjecture for divisors on a fibred variety over a finite field and the Tate conjecture for divisors on the generic scheme fibre under the condition that the generic scheme fibre has zero irregularity. Let \(\pi:X\to C\) be a surjective morphism of smooth projective varieties over a finite field \(F_q\) of characteristic \(p\), \(C\) is a curve and the generic scheme fibre of \(\pi\) is a smooth variety \(V\) over the field \(k=\kappa(C)\) of rational functions of the curve \(C\), \(\overline k\) is an algebraic closure of the field \(k\), \(k^s\) is its separable closure, \(NS(V)\) is the N\'eron - Severi group of classes of divisors on the variety \(V\) modulo algebraic equivalence, and assume that the following conditions hold: \(H^1(V\otimes\overline k,\mathcal O_{V\otimes\,\overline k})=0,\) \(NS(V)=NS(V\otimes\overline k).\) If, for a prime number \(l\) not dividing \({Card}([NS(V)]_{tors})\) and different from the characteristic of the field \(F_q\), the following relation holds \(NS(V)\otimes\Bbb Q_l\,\,\widetilde{\rightarrow}\,\,[H^2(V\otimes k^{sep},Q_l(1))]^{Gal( k^{sep}/k)} \) \((\)in other words, if the Tate conjecture for divisors on \(V\) holds\()\), then for any prime number \(l\neq charr(F_q)\) the Tate conjecture holds for divisors on \(X\): \(NS(X)\otimes Q_l\,\,\widetilde{\rightarrow} \,\,[H^2(X\otimes\overline F_q,Q_l(1))]^{Gal(\overline F_q/F_q)}.\) In particular, it follows from this result that the Tate conjecture for divisors on an arithmetic model of a \(K3\) surface over a sufficiently large global field of finite characteristic different from 2 holds as well.
About the Author
Tatyana V. ProkhorovaRussian Federation
PhD
87 Gorky str., Vladimir 600000, Russia
References
1. J.S. Milne, “Values of zeta functions of varieties over finite fields”, Amer. J. Math., 108 (1986), 297–360.
2. J. Tate, “Conjectures on algebraic cycles in l-adic cohomology”, Proc. Symposia in Pure Math., 55 (1994 Part 1), 71 – 83.
3. Colliot-Theґle`ne J.-L., Skorobogatov A.N., Swinnerton-Dyer P., “Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points”, Invent. Math., 134:3 (1998), 579–650.
4. Милн Дж., Этальные когомологии, Мир, М., 1983; [Milne J.S., Etale cohomology, Princeton Univ. Press, Princeton, 1980].
5. Танкеев С. Г., “О группе Брауэра арифметической модели гиперкэлерова многообразия над числовым полем”, Изв. РАН. Сер. матем., 79:3 (2015), 203 – 224; [Tankeev S.G., “On the Brauer group of arithmetic model of a hyperkЁahler variety over a number field”, Izv. Math., 79:3 (2015), 623–644].
6. Lang S., Weil A., “Number of points of varieties in finite fields”, Amer. J. Math., 76:4 (1954), 819–827.
7. Танкеев С. Г., “О группе Брауэра арифметической схемы. II”, Изв. РАН. Сер. матем., 67:5 (2003), 155–176; [Tankeev S.G., “On the Brauer group of arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029].
8. Атья М., Макдональд И., Введение в коммутативную алгебру, Мир, М., 1972; [Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison–Wesley Publ. Co., Massachusets, 1969].
9. Skorobogatov A. N., “Descent on fibrations over the projective line”, Amer. J. Math., 118:5 (1996), 905–923.
10. Бурбаки Н., Алгебра. Многочлены и поля. Упорядоченные группы, Элементы математики, Наука, М., 1965; [Bourbaki N., Eґleґments de Matheґmatique. Algeґbre, livre II, Hermann, Paris, 1963].
11. Алгебраическая теория чисел, ред. Касселс Дж., ФреЁлих А., Мир, М., 1969; [ Algebraic number theory, Proc. Internat. Conf. Brighton, 1965, eds. Cassels G. W. S., FroЁlich A., Academic Press, London, and Thompson, Washington, DC, 1967].
12. Madapusi Pera K., “The Tate conjecture for K 3 surfaces in odd characteristic Descent on fibrations over the projective line”, Invent. math., 201 (2015), 625–668.
Review
For citations:
Prokhorova T.V. On the Tate Conjectures for Divisors on a Fibred Variety and on its Generic Scheme Fibre in the Case of Finite Characteristic. Modeling and Analysis of Information Systems. 2017;24(2):205-214. (In Russ.) https://doi.org/10.18255/1818-1015-2017-2-205-214