Preview

Modeling and Analysis of Information Systems

Advanced search

Existence of an Unbiased Entropy Estimator for the Special Bernoulli Measure

https://doi.org/10.18255/1818-1015-2017-5-521-536

Abstract

Let \(\Omega = A^{N}\)  be a space of right-sided infinite sequences drawn from a finite alphabet \(A = \{0,1\}\),  \(N = \{1,2,\dots \}\),
\[\label{rho}
  \rho(\boldsymbol{x},\boldsymbol{y}) =
\sum_{k=1}^{\infty}|x_{k} - y_{k}|2^{-k}
\]
a metric on \(\Omega = A^{N}\),
and \(\mu\) is a probability measure on \(\Omega\). Let \(\boldsymbol{\xi_0}, \boldsymbol{\xi_1}, \dots, \boldsymbol{\xi_n}\) be independent identically distributed points on \(\Omega\). We study the estimator \(\eta_n^{(k)}(\gamma)\) of the reciprocal of the entropy \(1/h\) that are defined as

\[ \label{etan}
\eta_n^{(k)}(\gamma) = k \left(r_{n}^{(k)}(\gamma) - r_{n}^{(k+1)}(\gamma)\right),\]
where
\[\label{def_r}
r_n^{(k)}(\gamma) =
\frac{1}{n+1}\sum_{j=0}^{n} \gamma\left(\min_{i:i \neq j} {^{(k)}}
\rho(\boldsymbol{\xi_{i}}, \boldsymbol{\xi_{j}})\right),
\]
 \(\min ^{(k)}\{X_1,\dots,X_N\}=  X_k\), if  \(X_1\leq X_2\leq \dots\leq X_N\). The number \(k\) and the function \(\gamma(t)\) are auxiliary parameters.

The main result of this paper is

Theorem. Let \(\mu\) be the Bernoulli measure  with probabilities \(p_0,p_1>0\), \(p_0+p_1=1\), \(p_0=p_1^2\). There exists a function \(\gamma(t)\) such that
\[E\eta_n^{(k)}(\gamma) =  \frac1h.\]

 

About the Author

Evgeniy A. Timofeev
P.G. Demidov Yaroslavl State University
Russian Federation
ScD, professor


References

1. Falconer K. J., Fractal geometry: Mathematical Foundation and Applications, John Wiley & Sons, NY, USA, 1990.

2. Gradshtein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Fifth Edition, Academic Press, 1994.

3. Grassberger P., “Estimating the information content of symbol sequences and efficient codes”, IEEE Trans. Inform. Theory, 35 (1989), 669–675.

4. Hutchinson J. E., “Fractals and sel-similarity”, Indiana Univ. Math. J., 30 (1981), 713– 747.

5. Timofeev E. A., “Selection of a Metric for the Nearest Neighbor Entropy Estimators”, Journal of Mathematical Sciences, 203:6 (2014), 892–906.

6. Kaltchenko A., Timofeeva N., “Entropy Estimators with Almost Sure Convergence and an O(n −1 ) Variance”, Advances in Mathematics of Communications, 2:1 (2008), 1–13.

7. Kaltchenko A., Timofeeva N., “Rate of convergence of the nearest neighbor entropy estimator”, AEU – International Journal of Electronics and Communications, 64:1 (2010), 75–79.

8. Timofeeva N. E., “Construction of Entropy Estimator with Special Metric and Arbitrary Function”, Modeling and Analysis of Information Systems, 20:6 (2013), 174–178, (in Russian).

9. Timofeev E. A., “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269.

10. Timofeev E. A., “Statistical Estimation of measure invariants”, St.Petersburg Math. J., 17:3 (2006), 527–551.


Review

For citations:


Timofeev E.A. Existence of an Unbiased Entropy Estimator for the Special Bernoulli Measure. Modeling and Analysis of Information Systems. 2017;24(5):521-536. (In Russ.) https://doi.org/10.18255/1818-1015-2017-5-521-536

Views: 812


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)