On Locally Convex Curves
https://doi.org/10.18255/1818-1015-2017-5-567-577
Abstract
We demonstrate how conditions of disconjugacy of the differential operator \(L\) that were established in works of G.A. Bessmertnyh and A.Yu.Levin, can be applied.
About the Author
Vladimir KlimovRussian Federation
doctor of science
References
1. Luis A. Santal´o, Introduction to integral geometry, Hermann, 1953, 127 pp., (in English).
2. Krasnosel’skii M. A., Perov A. I., Povolockii A. I., Zabreiko P. P., Plane Vector Fields, New York City: Academic Press, 1966, 242 pp
3. Prasolov V. V., Elementy kombinatornoi i differencialnoi geometrii, MCNMO, Moscow, 2004, (in Russian).
4. Ivanov A. O., Tuzhilin A. A., Fomenko A. T., “Computer modeling of curves and surfaces”, J. Math. Sci., 172:5 (2011), 663–689.
5. Tricomi F. G., Differencial equations, Blackie & Son Limited, 1961, (in English).
6. Bessmertnyh G. A., Levin A. Yu., “O nekotoryh ocenkah differencyruemyh funccii odnoi peremennoi”, DAN SSSR, 144:3 (1962), 471–474, (in Russian)
7. Zaputryaeva E. S., “Deformations of Planar Equilateral Polygons with a Constant Index”, Modeling and Analysis of Information Systems, 20:1 (2013), 138–159, (in Russian).
8. Levin A. Yu., “Nonoscillation of solutions of the equation x (n) + p1(t)x (n−1) + . . . + pn(t)x = 0”, Russian Math. Surveys, 24:2(146) (1969), 43–96, (in Russian)
9. Derr V. A., “Nonoscillation of solutions of linear differential equations”, Vestnik Udmurtskogo universiteta, 15:5 (2009), 46–89, (in Russian)
10. Anisov S. S., “Convex curves in RPn ”, Proc. Steklov Inst. Math., 221 (1998), 3–39
Review
For citations:
Klimov V. On Locally Convex Curves. Modeling and Analysis of Information Systems. 2017;24(5):567-577. (In Russ.) https://doi.org/10.18255/1818-1015-2017-5-567-577