Preview

Modeling and Analysis of Information Systems

Advanced search

On Minimal Absorption Index for an n-Dimensional Simplex

https://doi.org/10.18255/1818-1015-2018-1-140-150

Abstract

Let  \(n\in{\mathbb N}\) and let \(Q_n\) be the unit cube \([0,1]^n\). For a nondegenerate simplex \(S\subset{\mathbb R}^n\), by \(\sigma S\) denote the homothetic copy of \(S\) with center of homothety in the center of gravity of \(S\) and ratio of homothety \(\sigma.\) Put \(\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\}.\) We call \(\xi(S)\)  an absorption index of simplex \(S\). In the present paper, we give new estimates for the minimal absorption index of the simplex contained in \(Q_n\), i.\,e., for the number \(\xi_n=\min \{ \xi(S): , S\subset Q_n \}.\) In particular, this value and its analogues have applications in estimates for the norms of interpolation projectors. Previously the first author proved some general estimates of \(\xi_n\). Always \(n\leq\xi_n< n+1\). If there exists an Hadamard matrix of order \(n+1\), then \(\xi_n=n\). The best known general upper estimate has the form \(\xi_n\leq \frac{n^2-3}{n-1}\)  \((n>2)\). There exists a constant \(c>0\) not depending on \(n\) such that, for any simplex \(S\subset Q_n\) of maximum volume, inequalities \(c\xi(S)\leq \xi_n\leq \xi(S)\) take place. It motivates the use of maximum volume simplices in upper estimates of \(\xi_n\). The set of vertices of such a simplex can be consructed with  application of maximum \(0/1\)-determinant of order \(n\) or maximum \(-1/1\)-determinant of order \(n+1\). In the paper, we compute absorption indices of maximum volume simplices in \(Q_n\) constructed from known maximum \(-1/1\)-determinants via a special procedure. For some \(n\), this approach makes it possible to lower theoretical upper bounds  of \(\xi_n\). Also we give best known upper estimates of \(\xi_n\) for \(n\leq 118\)

About the Authors

Mikhail V. Nevskii
P.G. Demidov Yaroslavl State University
Russian Federation
Doctor of Science, Centre of Integrable Systems


Alexey Y. Ukhalov
P.G. Demidov Yaroslavl State University
Russian Federation
PhD, Centre of Integrable Systems


References

1. Klimov V.S., Ukhalov A.Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki, P.G. Demidov Yaroslavl State University, Yaroslavl, 2014, 96 pp., (in Russian).

2. Nevskij M.V., Khlestkova I.V., “K voprosu o minimalnoi lineinoi interpolyacii”, Sovremennye problemy matematiki i informatiki, 9, P.G. Demidov Yaroslavl State University, Yaroslavl, 2008, 31–37, (in Russian).

3. Nevskij M.V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43, (in Russian).

4. Nevskii M.V., “On a property of n-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555.

5. Nevskii M.V., Geometricheskie ocenki v polinomialnoy interpolyacii, P.G. Demidov Yaroslavl State University, Yaroslavl, 2012, (in Russian).

6. Nevskii M.V., Ukhalov A.Yu., “On numerical characteristics of a simplex and their estimates”, Modeling and Analysis of Information Systems, 23:5 (2016), 603–619, (in Russian).

7. Nevskii M.V., Ukhalov A.Yu., “New estimates of numerical values related to a simplex”, Modeling and Analysis of Information Systems, 24:1 (2017), 94–110, (in Russian).

8. Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets) – Toronto – London, 1967,(in English).

9. Hudelson M., Klee V., Larman D., “Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598.

10. Lassak M., “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21:3 (1999), 449–462.

11. Mangano S., Mathematica cookbook, O’Reilly Media Inc., Cambridge, 2010.

12. Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312.

13. Scott P.R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362.

14. Scott P.R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39:3 (1989), 329– 333.


Review

For citations:


Nevskii M.V., Ukhalov A.Y. On Minimal Absorption Index for an n-Dimensional Simplex. Modeling and Analysis of Information Systems. 2018;25(1):140-150. (In Russ.) https://doi.org/10.18255/1818-1015-2018-1-140-150

Views: 1354


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)