Preview

Modeling and Analysis of Information Systems

Advanced search

On the Hodge, Tate and Mumford-Tate Conjectures for Fibre Products of Families of Regular Surfaces with Geometric Genus 1

https://doi.org/10.18255/1818-1015-2018-3-312-322

Abstract

The Hodge, Tate and Mumford-Tate conjectures are proved for the fibre product of two non-isotrivial 1-parameter families of regular surfaces with geometric genus 1 under some conditions on degenerated fibres, the ranks of the N\'eron - Severi groups of generic geometric fibres and representations of Hodge groups in transcendental parts of rational cohomology.
Let \(\pi_i:X_i\to C\quad (i = 1, 2)\) be a projective non-isotrivial family (possibly with degeneracies) over a smooth projective curve \(C\). Assume that the discriminant loci \(\Delta_i=\{\delta\in C\,\,\vert\,\, Sing(X_{i\delta})\neq\varnothing\} \quad (i = 1, 2)\) are disjoint, \(h^{2,0}(X_{ks})=1,\quad h^{1,0}(X_{ks}) = 0\) for any smooth fibre \(X_{ks}\), and the following conditions hold:
\((i)\) for any point \(\delta \in \Delta_i\) and the Picard-Lefschetz transformation \( \gamma \in GL(H^2 (X_{is}, Q)) \), associated with a smooth part \(\pi'_i: X'_i\to C\setminus\Delta_i\) of the morphism \(\pi_i\) and with a loop around the point \(\delta \in C\), we have \((\log(\gamma))^2\neq0\);
\((ii)\) the variety \(X_i \, (i = 1, 2)\), the curve \(C\) and the structure morphisms \(\pi_i:X_i\to C\) are defined over a finitely generated subfield \(k \hookrightarrow C\).
If for generic geometric fibres \(X_{1s}\) \, and \, \(X_{2s}\) at least one of the following conditions holds: \((a)\) \(b_2(X_{1s})- rank NS(X_{1s})\) is an odd prime number, \(\quad\,\,\) \(b_2(X_{1s})- rank NS(X_{1s})\neq b_2(X_{2s})- rank NS(X_{2s})\); \((b)\) the ring \(End_{ Hg(X_{1s})} NS_ Q(X_{1s})^\perp\) is an imaginary quadratic field, \(\quad\,\, b_2(X_{1s})- rank NS(X_{1s})\neq 4,\) \(\quad\,\, End_{ Hg(X_{2s})} NS_ Q(X_{2s})^\perp\) is a totally real field or \(\,\, b_2(X_{1s})- rank NS(X_{1s})\,>\, b_2(X_{2s})- rank NS(X_{2s})\) ; \((c)\) \([b_2(X_{1s})- rank NS(X_{1s})\neq 4, \, End_{ Hg(X_{1s})} NS_ Q(X_{1s})^\perp= Q\); \(\quad\,\,\) \(b_2(X_{1s})- rank NS(X_{1s})\neq b_2(X_{2s})- rank NS(X_{2s})\),
then for the fibre product \(X_1 \times_C X_2\) the Hodge conjecture is true, for any smooth projective \(k\)-variety \(X_0\) with the condition \(X_1 \times_C X_2\) \(\widetilde{\rightarrow}\) \(X_0 \otimes_k C\) the Tate conjecture on algebraic cycles and the Mumford-Tate conjecture for cohomology of even degree are true.

About the Author

Olga V. Oreshkina (Nikol’skaya)
A.G. and N.G. Stoletov Vladimir State University
Russian Federation
PhD


References

1. Hodge W. V. D., “The topological invariants of algebraic varieties”, Proceedings of International Congress of Mathematicians, 1, 1952, 182–192.

2. Tankeev S. G., “Cycles on simple abelian varieties of prime dimension”, Mathematics of the USSR– Izvestiya, 20:1 (1983), 157–171

3. Gordon B. B., “A survey of the Hodge conjecture for Abelian varieties”, Appendix in: Lewis J.D., A survey of the Hodge conjecture. 2 ed., CRM Monograph Series, 10, American Mathematical Society, Providence, RI, 1999, 297–356.

4. Nikolskaya O. V., “On algebraic cycles on a fibre product of families of K3 surfaces”, Izv. Math., 77:1 (2013), 143–162.

5. Nikolskaya O. V., “On the geometry of a smooth model of a fibre product of families of K3 surfaces”, Sbornik: Mathematics, 205:2 (2014), 269–276.

6. Nikolskaya O. V. , “On algebraic cohomology classes on a smooth model of a fiber product of families of K3 surfaces”, Math. Notes, 96:5 (2014), 745–752.

7. Mamford D., “Families of abelian varieties”, Proc. of Symposium in Pure Math. AMS, IX (1966), 347–351.

8. Serre J.-P. , “Representations l-adiques”, Algebraic number theory, Papers contributed for the International Symposium, Kyoto, 1976, ed. S. Iyanaga, Japan Society for the Promotion of Science, Tokyo, 1977, 177–193.

9. Tankeev S.G., “Surfaces of K3 type over number fields and the Mumford-Tate conjecture. II”, Russion Akad. Sci. Izv. Math., 59:3 (1995), 619–646.

10. Tankeev S. G., “Cycles on simple abelian varieties of prime dimension over number fields”, Mathematics of the USSR–Izvestiya, 31:3 (1988), 527–540.

11. Pink R. , “l-adic algebraic monodromy group cocharacters, and the Mumford-Tate conjecture”, J. reine. angew. Math., 495 (1998), 187–237.

12. Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Proc. Conf. Purdue Univ., 1963, Harper and Row, New York, 1965, 93–110.

13. Tate J. , “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144.

14. Faltings G. , “Endlichkeitss¨atze f¨ur abelsche Variet¨aten ¨uber Zahlk¨orpern”, Invent. Math., 73:3 (1983), 349–366.

15. Tankeev S. G. , “On cycles on abelian varieties of prime dimension over finite and number fields”, Mathematics of the USSR–Izvestiya, 22:2 (1984), 329–337.

16. Moonen B. , “On the Tate and Mumford-Tate conjectures in codimension one for varieties with h 2,0 = 1”, Duke Math. J., 166:4 (2017), 739–799.

17. Pignatelli R. , “Some (big) irreducible components of the moduli space of minimal surfaces of general type with pg = q = 1 and K2 = 4”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 20:3 (2009), 207–226.

18. Zarhin Yu. G. , “Hodge groups of K3 surfaces”, Journal f¨ur die reine und angewandte Mathematik, 341 (1983), 193–220.

19. Nikol’skaya O.V., “On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus 1”, Model. Anal. Inform. Sist., 23:4 (2016), 440–465, (in Russian).

20. Mustafin G.A., “Families of algebraic varieties and invariant cycles”, Mathematics of the USSR–Izvestiya, 27:2 (1986), 251–278.

21. Deligne P., “Th´eorie de Hodge. III”, Inst. Hautes Etudes Sci. Publ. Math. ´ , 44 (1974), 5–77.

22. Kempf G. et al., Toroidal embeddings. I, Lecture Notes in Mathematics, 339, SpringerVerlag, Berlin – New York, 1973.

23. Kulikov Vic. S., “Degenerations of K3 surfaces and Enriques surfaces”, Math. USSR–Izv., 11:5 (1977), 957–988

24. Tankeev S. G. , “The arithmetic and geometry of a generic hypersurface section”, Izv. Math., 66:2 (2002), 393–424

25. Kawamata Y. , “Kodaira dimension of algebraic fiber spaces over curves”, Invent. Math., 66:1 (1982), 57–71.

26. Birkar C. , “Iitaka conjecture Cn,m in dimension six”, Compositio Mathematica, 2009:6 (1979), 1442–1446.


Review

For citations:


Oreshkina (Nikol’skaya) O.V. On the Hodge, Tate and Mumford-Tate Conjectures for Fibre Products of Families of Regular Surfaces with Geometric Genus 1. Modeling and Analysis of Information Systems. 2018;25(3):312-322. (In Russ.) https://doi.org/10.18255/1818-1015-2018-3-312-322

Views: 1026


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)