On the Taylor Differentiability in Spaces Lp, 0 < p ≤ ∞
https://doi.org/10.18255/1818-1015-2018-3-323-330
Abstract
References
1. Bernstein S. N., “On the Question of Local Best Approximation of Functions”, Dokl. USSR Acad. Sci., 26:9 (1940), 839–842, (in Russian).
2. Calderon A. P., Zygmund A., “Local properties of solution of elliptic partial differential equation”, Studia Math., 20 (1961), 171–225.
3. Chebyshev P. L., Collected Works, In 5 v. V. 2, Izd. AN SSSR, Moscow–Leningrad, 1954, (in Russian).
4. Morozov A. N.,, “Analog of Bernstein’s Theorem in the Space L1”, Math. Notes, 57:5 (1995), 485–488.
5. Morozov A. N., “On a Characterization of Spaces of Differentiable Functions”, Math. Notes, 70:5 (2001), 688– 697.
6. Brudnyi Yu. A., “Criteria for the Existence of Derivatives in L p”, Mathematics of the USSR-Sbornik, 2:1 (1967), 35–55.
7. Brudnyi Yu. A., “Spaces Defined by Meanes of Local Approximations”, Trans. Moscow Math. Soc., 24 (1971), 73—139.
8. Morozov A. N., “Local Approximations of Differentiable Functions”, Math. Notes, 100:2 (2016), 256–262.
9. Irodova I. P., “Svoystva funktsiy, zadannykh skorostyu ubyvaniya kusochno-polinomialnoy approksimatsii”, Issledovaniya po teorii funktsiy mnogikh veshchestvennykh peremennykh, Sb. nauch. trudov, Yaroslavl, 1980, 92–117, (in Russian).
Review
For citations:
Morozov A.N. On the Taylor Differentiability in Spaces Lp, 0 < p ≤ ∞. Modeling and Analysis of Information Systems. 2018;25(3):323-330. (In Russ.) https://doi.org/10.18255/1818-1015-2018-3-323-330