Preview

Modeling and Analysis of Information Systems

Advanced search

Center Manifold Method in the Asymptotic Integration Problem for Functional Differential Equations with Oscillatory Decreasing Coefficients. II

https://doi.org/10.18255/1818-1015-2014-5-5-37

Abstract

In this paper we study the asymptotic integration problem in the neighborhood of infinity for a certain class of linear functional differential systems. We construct the asymptotics for the solutions of the considered systems in a critical case. In the second part of the work we establish the existence of a critical manifold for the considered class of systems and study its main properties. We also investigate the asymptotic integration problem for a reduced system. We illustrate the proposed method with an example of constructing the asymptotics for the solutions of a certain scalar delay differential equation.

About the Author

P. N. Nesterov
P.G. Demidov Yaroslavl State University
Russian Federation
канд. физ.-мат. наук, доцент, Sovetskaya str., 14, Yaroslavl, 150000, Russia


References

1. Беллман Р. Теория устойчивости решений дифференциальных уравнений. М.: ИЛ, 1954. 216 с. (Bellman R. Stability theory of differential equations. New York, McGrawHill, 1953.)

2. Бурд В.Ш., Каракулин В.А. Асимптотическое интегрирование систем линейных дифференциальных уравнений с колебательно убывающими коэффициентами // Математические заметки. 1998. Т. 64, №5. C. 658–666. (English transl.: Burd V.Sh., Karakulin V.A. On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients // Math. Notes. 1998. V. 64, No. 5. P. 571–578.)

3. Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: ИЛ, 1958. 475 с. (Coddington E.A., Levinson N. Theory of ordinary differential equations. New York, McGraw-Hill, 1955.)

4. Нестеров П.Н. Метод центральных многообразий в задаче асимптотического интегрирования функционально-дифференциальных уравнений с колебательно убывающими коэффициентами. I // Модел. и анализ информ. систем. 2014. Т. 21, №3. С. 5–34. [Nesterov P.N. Center manifold method in the asymptotic integration problem for functional differential equations with oscillatory decreasing coefficients. I // Modeling and Analysis of Information Systems. 2014. Vol. 21, №3. P. 5–34 (in Russian).]

5. Нестеров П.Н. Метод усреднения в задаче асимптотического интегрирования систем с колебательно убывающими коэффициентами // Дифференциальные уравнения. 2007. Т. 43, №6. С. 731–742. (English transl.: Nesterov P.N. Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients // Differ. Equ. 2007. V. 43, No. 6. P. 745–756.)

6. Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970. 720 с. (Hartman P. Ordinary Differential Equations. New York: John Wiley & Sons, Inc., 1964.)

7. Хейл Дж. Теория функционально-дифференциальных уравнений. М.: Мир, 1984. (Hale J.K. Theory of functional differential equations. New York: Springer-Verlag, 1977.)

8. Ait Babram M., Hbid M.L., Arino O. Approximation scheme of a center manifold for functional differential equations // J. Math. Anal. Appl. 1997. Vol. 213. P. 554–572.

9. Carr J. Applications of centre manifold theory. New York: Springer-Verlag, 1981.

10. Castillo S., Pinto M. Asymptotic integration of ordinary different systems // J. Math. Anal. Appl. 1998. Vol. 218, No. 1. P. 1–12.

11. Coppel W.A. Stability and asymptotic behavior of differential equations. D.C. Heath and Co., Boston, 1965.

12. Devinatz A. The asymptotic nature of the solutions of certain linear systems of differential equations // Pacific J. Math. 1965. V. 15, No. 1. P. 75–83.

13. Eastham M.S.P. The asymptotic solution of linear differential systems. London Math. Soc. Monographs. Oxford: Clarendon Press, 1989.

14. Hale J., Verduyn Lunel S.M. Introduction to functional differential equations. Appl. Math. Sciences 99. New York: Springer-Verlag, 1993.

15. Harris Jr. W.A., Lutz D.A. Asymptotic integration of adiabatic oscillators // J. Math. Anal. Appl. 1975. Vol. 51. P. 76–93.

16. Kolmanovskii V., Myshkis A. Introduction to the theory and applications of functional differential equations. Dordrecht: Kluwer Academic Publishers, 1999.

17. Nesterov P. Method of averaging for systems with main part vanishing at infinity // Math. Nachr. 2011. Vol. 284, No. 11-12. P. 1496–1514.


Review

For citations:


Nesterov P.N. Center Manifold Method in the Asymptotic Integration Problem for Functional Differential Equations with Oscillatory Decreasing Coefficients. II. Modeling and Analysis of Information Systems. 2014;21(5):5-37. (In Russ.) https://doi.org/10.18255/1818-1015-2014-5-5-37

Views: 882


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)