Preview

Modeling and Analysis of Information Systems

Advanced search

Optimal Behavior Control of an Initial-Boundary Problem Solution Modelling Rotation of a Solid Body with the Flexible Rod

https://doi.org/10.18255/1818-1015-2014-5-78-92

Abstract

An initial-boundary problem modelling the rotation of discrete-continuum mechanical system, which consists from a solid and the rigidly connected flexible rod. To solve the problem we determine a solution notion, prove its existence, uniqueness, and continuous dependence from start conditions and parameters of the boundary task. Are resolved tasks of solution rotation from the start phase state to the finish one at a specified time moment and with the controller function norm minimum in the L∞(0, T) space and time control problem with a limited norm of controller function in the specified space. Maximum principe was formulated, and an algorithm of optimal control modelling is proposed. The moments problem is used as an investigation method.

About the Authors

E. P. Kubyshkin
P.G. Demidov Yaroslavl State University
Russian Federation
д-р. физ.-мат. наук, профессор кафедры математического моделирования, Sovetskaya str., 14, Yaroslavl, 150000, Russia


M. S. Tryakhov
P.G. Demidov Yaroslavl State University
Russian Federation
аспирант кафедры математического моделирования, Sovetskaya str., 14, Yaroslavl, 150000, Russia


References

1. Бербюк В.Е. Динамика и оптимизация робототехнических систем. Киев: Наукова думка, 1989. 192 с. [Beryuk V.E. Dinamika i optimizatsiya robototekhnicheskikh sistem. Kiev: Naukova Dumka, 1989 (in Russian)].

2. Кубышкин Е. П. Оптимальное управление поворотом твердого тела с гибким стержнем // Прикладная математика и механика. 1992. Т. 56. Вып. 1. С. 240–249 (English transl.: Kubyshkin Ye. P. Optimal control of the rotation of a solid with a flexible rod // Journal of Applied Mathematics and Mechanics. 1992. V. 56, №2. P. 205–214).

3. Krabs W., Chi-Long N. On the Controllability of a Robot Arm // Mathematical Methods in the Applied Sciences. 1998. V. 21. P. 25–42.

4. Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовом пространстве. М.: Наука, 1966. 544 с. (English transl.: Akhiezer N.I., Glazman I.M. Theory of linear operators in Hilbert space. 2 ed. Dover, 1993. 377 p.).

5. Вибрации в технике: Справочник. М.: Машиностроение, 1978. 362 с. [Vibratsii v tekhnike: Spravochnik. M., 1978. 362 s. (in Russian)].

6. Крейн М. Г., Нудельман А. А. Проблема моментов Маркова и экстремальные задачи. М.: Наука, 1973. С. 554 (English transl.: Krein M.G., Nudelman A.A. The Markov moment problem and extremal problems. Ideas and problems of P. L. Chebyshev and A. A. Markov and their further development // Translations of Mathematical Monographs. Vol. 50. American Mathematical Society, Providence, R.I., 1977. 417 p.).

7. Вулих Б. З. Введение в функциональный анализ. М.: Наука, 1967. 414 с. (English transl.: Vulikh B. Z. / Introduction to Functional Analysis for Scientists and Technologists // Elsevier Science and Technology, 1963. 404 p.).


Review

For citations:


Kubyshkin E.P., Tryakhov M.S. Optimal Behavior Control of an Initial-Boundary Problem Solution Modelling Rotation of a Solid Body with the Flexible Rod. Modeling and Analysis of Information Systems. 2014;21(5):78-92. (In Russ.) https://doi.org/10.18255/1818-1015-2014-5-78-92

Views: 890


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)