Application of Numerical Optimization Methods to Perform Molecular Docking on Graphics Processing Units
https://doi.org/10.18255/1818-1015-2014-5-93-101
Abstract
An analysis of numerical optimization methods for solving a problem of molecular docking has been performed. Some additional requirements for optimization methods according to GPU architecture features were specified. A promising method for implementation on GPU was selected. Its implementation was described and performance and accuracy tests were performed.
About the Authors
M. A. FarkovRussian Federation
аспирант, Svobodny pr., Krasnoyarsk, 660041, Russia
A. I. Legalov
Russian Federation
профессор, заведующий кафедрой вычислительной техники, Svobodny pr., Krasnoyarsk, 660041, Russia
References
1. Фарков М.А. Вычисление сеток взаимодействия молекул с использованием графических процессоров // Исследования наукограда. 2013. 3(5), июль–сентябрь. C. 49–52.
2. Trott O., Olson A. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading // Journal Computational Chemistry. 2010. 31. P. 455–461.
3. Jones G., Willett P., Glen R., Leach A., Taylor R. Development and Validation of a Genetic Algorithm for Flexible Docking // Journal of Molecular Biology. 1997. 267. P. 727–748.
4. Stroganov O.V., Novikov F., Stroylov V., Kulkov V., Chilov G. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening // Journal of Chemical Information and Modeling. 2008. 48(12). P. 2371–2385.
5. Liu M., Wang S. MCDOCK: A Monte Carlo simulation approach to the molecular docking problem // Journal of Computer-Aided Molecular Design. 1999. 13. P. 435–451.
6. Meiler J., Baker D. ROSETTALIGAND: Protein–Small Molecule Docking with Full SideChain Flexibility // PROTEINS: Structure, Function, and Bioinformatics. 2006. 65. P. 538–548.
7. Korb O., Stutzle T., Exner T.E. Accelerating molecular docking calculations using graphics processing units // Journal of chemical information and modeling. American Chemical Society. 2011. 51(4). P. 865–876.
8. Storn R., Price K. Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces // Journal of Global Optimization. 1997. 11(4). P. 341–359.
9. Pechan I., Feher B. Hardware Accelerated Molecular Docking: A Survey // Bioinformatics. ISBN 978-953-51-0878-8. Available from: http://www.intechopen.com/books/bioinformatics/hardware-accelerated-molecular-docking-a-survey
10. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsel, D.S., Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility // Journal of Computational Chemistry. 2009. 30. P. 2785–2791.
11. Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function // Journal of Computational Chemistry. 1998. 19. P. 1639–1662.
12. Farkov M.A. Calculation of force field grids for molecular docking using GPU // Journal of Siberian Federal University. Biology. 2014. 7(1). P. 4–13.
Review
For citations:
Farkov M.A., Legalov A.I. Application of Numerical Optimization Methods to Perform Molecular Docking on Graphics Processing Units. Modeling and Analysis of Information Systems. 2014;21(5):93-101. (In Russ.) https://doi.org/10.18255/1818-1015-2014-5-93-101