Application of Computer Algebra Systems to the Construction of the Collocations and Least Residuals Method for Solving the 3D Navier–Stokes Equations
https://doi.org/10.18255/1818-1015-2014-5-131-147
Abstract
The method of collocations and least residuals (CLR), which was proposed previously for the numerical solution of two-dimensional Navier–Stokes equations governing the stationary flows of a viscous incompressible fluid, is extended here for the three-dimensional case. The solution is sought in the implemented version of the method in the form of an expansion in the basis solenoidal functions. At all stages of the CLR method construction, a computer algebra system (CAS) is applied for the derivation and verification of the formulas of the method and for their translation into arithmetic operators of the Fortran language. For accelerating the convergence of iterations a sufficiently universal algorithm is proposed, which is simple in its implementation and is based on the use of the Krylov’s subspaces. The obtained computational formulas of the CLR method were verified on the exact analytic solution of a test problem. Comparisons with the published numerical results of solving the benchmark problem of the 3D driven cubic cavity flow show that the accuracy of the results obtained by the CLR method corresponds to the known high-accuracy solutions.
About the Authors
V. P. ShapeevRussian Federation
доктор физ.-мат. наук, профессор, Institutskaya str., 4/1, Novosibirsk, 630090, Russia
E. V. Vorozhtsov
Russian Federation
доктор физ.-мат. наук, профессор, Institutskaya str., 4/1, Novosibirsk, 630090, Russia
References
1. Wesseling P. Principles of Computational Fluid Dynamics. Springer-Verlag, Berlin, 2001.
2. Ferziger J.H., Peri´c M. Computational Methods for Fluid Dynamics, 3rd Edition. Berlin: Springer-Verlag, 2002.
3. Бураго Н.Г. Вычислительная механика. М.: Изд-во МГТУ им. Н.Э. Баумана, 2012 (English transl.: Burago N.G. Computational Mechanics. Moscow: published by Moscow State Techn. University named after N.E. Bauman, 2012.).
4. Быстров Ю.А., Исаев С.А., Кудрявцев Н.А., Леонтьев А.И. Численное моделирование вихревой интенсификации теплообмена в пакетах труб. Санкт-Петербург: Судостроение, 2005. (English transl.: Bystrov Yu.A., Isaev S.A., Kudryavtsev N.A., Leontiev A.I. Numerical Modeling of Vortex Intensification of Heat Exchange in Pipe Packages. St. Petersburg: Sudostroenie, 2005.)
5. Girault V., Raviart P.A. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, London, 2011.
6. Черный С.Г., Чирков Д.В., Лапин В.Н., Скороспелов В.А., Шаров С.В. Численное моделирование течений в турбомашинах. Новосибирск: Наука, 2006. (English transl.: Cherny S.G., Chirkov D.V., Lapin V.N., Skorospelov V.A. Numerical Modeling of Flows in Turbomachines. Novosibirsk: Nauka, 2006.)
7. Слепцов А.Г. Коллокационно-сеточное решение эллиптических краевых задач // Моделирование в механике. 1991. Т. 5(22), №2. С. 101–126. (English transl.: Sleptsov A.G. Collocation-grid solution of elliptic boundary-value problems // Modelirovanie v mekhanike. 1991. V. 5(22), No. 2. P. 101–126.)
8. Семин Л.Г., Слепцов А.Г., Шапеев В.П. Метод коллокаций – наименьших квадратов для уравнений Стокса // Вычисл. технологии. 1996. Т. 1, № 2. С. 90–98. (English transl.: Semin L.G., Sleptsov A.G., Shapeev V.P. Collocation and least-squares method for Stokes equations // Computat. Technologies. 1996. V. 1, No. 2. P. 90–98.)
9. Исаев В.И., Шапеев В.П. Варианты метода коллокаций и наименьших квадратов повышенной точности для численного решения уравнений Навье–Стокса // Ж. вычисл. матем. и матем. физ. 2010. Т. 50, № 10. С. 1758–1770. (English transl.: Isaev V.I., Shapeev V.P. High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations // Computat. Math. and Math. Phys. 2010. V. 50, No. 10. P. 1670–1681.)
10. Исаев В.И., Шапеев В.П. Метод коллокаций и наименьших квадратов повышенной точности для решения уравнений Навье–Стокса // Докл. Академии наук. 2012. Т. 442, №4. С. 442–445. (English transl.: Isaev V.I., Shapeev V.P. High-order accurate collocations and least squares method for solving the Navier - Stokes equations // Dokl. Math. 2012. V. 85. P. 71–74.)
11. Shapeev V.P., Vorozhtsov E.V. Symbolic-numeric implementation of the method of collocations and least squares for 3D Navier–Stokes equations // Gerdt V.P., Koepf W., Mayr E.W., Vorozhtsov E.V. (eds.) CASC 2012. LNCS. 2012. V. 7442. P. 321–333. Springer, Heidelberg.
12. Крылов А.Н. О численном решении уравнения, которым в технических вопросах определяются частоты малых колебаний материальных систем // Изв. АН СССР, Отд. матем. и естеств. наук. 1931. № 4. С. 491–539. (English transl.: Krylov A.N. On the numerical solution of the equation, which determines in technological questions the frequencies of small oscillations of material systems // Izv. AN SSSR, otd. matem. i estestv. nauk. 1931. No. 4. P. 491–539.)
13. Слепцов А.Г. Об ускорении сходимости линейных итераций. II // Моделирование в механике. Новосибирск, 1989. Т. 3, № 5. C. 118–125. (English transl.: Sleptsov A.G. On convergence acceleration of linear iterations. II // Modelirovanie v mekhanike. 1989. V. 3, No. 5. P. 118–125.)
14. Saad Y. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester, 1991.
15. Albensoeder S., Kuhlmann H.C. Accurate three-dimensional lid-driven cavity flow // J. Comput. Phys. 2005. V. 206. P. 536–558.
16. Botella O., Peyret R. Benchmark spectral results on the lid-driven cavity flow // Comput. Fluids. 1998. V. 27. P. 421–433.
Review
For citations:
Shapeev V.P., Vorozhtsov E.V. Application of Computer Algebra Systems to the Construction of the Collocations and Least Residuals Method for Solving the 3D Navier–Stokes Equations. Modeling and Analysis of Information Systems. 2014;21(5):131-147. (In Russ.) https://doi.org/10.18255/1818-1015-2014-5-131-147