Preview

Modeling and Analysis of Information Systems

Advanced search

Attractor in Circular Structure of Oscillatory Generalized Neural Elements

https://doi.org/10.18255/1818-1015-2014-5-148-161

Abstract

A perspective model of a neuron cell — the generalized neural element (GNE) is studied in this article. The model has an universal character. It combines properties of a neuron-oscillator and a neuron-detector. In this structure cyclic sequential pulse generation elements of the ring are studied. A nonlinear mapping for mismatches between pulses of neighboring elements is constructed. We prove the existence of a fixed point of this mapping (threshold value of mismatches) and its stability in a small neighborhood of the fixed point. In doing so the existence of a stable oscillatory mode of neural activity (attractor) of a certain type is proved. The parameters of the attractor (threshold values of mismatches) can be controlled in advance, due to the choice of synaptic weights of the links in the ring.

About the Author

E. V. Konovalov
P.G. Demidov Yaroslavl State University
Russian Federation
кандидат физ.-мат. наук, доцент кафедры компьютерных сетей, Sovetskaya str., 14, Yaroslavl, 150000, Russia


References

1. Коновалов Е.В. Устойчивый колебательный режим в нейронной сети обобщенных нейронных автоматов-детекторов // Моделирование и анализ информационных систем. 2007. Т. 14, № 2. С. 30–35. [Konovalov E.V. Ustoychivyy kolebatelnyy rezhim v neyronnoy seti obobshchennykh neyronnykh avtomatov-detektorov // Modelirovanie i analiz informatsionnykh sistem. 2007. Т. 14, № 2. S. 30–35 (in Russian)].

2. Крюков В.И., Борисюк Г.Н., Борисюк Р.М., Кириллов А.Б., Коваленко Е.И. Метастабильные и неустойчивые состояния в мозге. Пущино: НЦБИ АН СССР, 1986. [Kryukov V.I., Borisyuk G.N., Borisyuk R.M., Kirillov A.B., Kovalenko E.I. Metastabilnye i neustoychivye sostoyaniya v mozge. Pushchino: NTsBI AN SSSR, 1986 (in Russian)].

3. Майоров В.В., Мышкин И.Ю. Математическое моделирование нейронов сети на основе уравнений с запаздыванием // Математическое моделирование. 1990. Т.2, № 11. С. 64–76. [Mayorov V.V., Myshkin I.Yu. Matematicheskoe modelirovanie neyronov seti na osnove uravneniy s zapazdyvaniem // Matematicheskoe modelirovanie. 1990. T.2, № 11. S. 64–76 (in Russian)].

4. Eccles J. C. The Physiology of Synapses. New York : Academic Press Inc., 1964.

5. Lorente de No R. Physiology of Nervous System. 3rd ed. / edited by J.F. Fulton. Oxford University Press, New York, 1949. P. 288–330.

6. Rosenblatt F. Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan Books, 1962.


Review

For citations:


Konovalov E.V. Attractor in Circular Structure of Oscillatory Generalized Neural Elements. Modeling and Analysis of Information Systems. 2014;21(5):148-161. (In Russ.) https://doi.org/10.18255/1818-1015-2014-5-148-161

Views: 916


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)