Preview

Modeling and Analysis of Information Systems

Advanced search

Perfect Prismatoids are Lattice Delaunay Polytopes

https://doi.org/10.18255/1818-1015-2014-4-47-53

Abstract

A perfect prismatoid is a convex polytope P such that for every its facet F there exists a supporting hyperplane α k F such that any vertex of P belongs to either F or α. Perfect prismatoids concern with Kalai conjecture, that any centrally symmetric dpolytope P has at least 3d non-empty faces and any polytope with exactly 3d non-empty faces is a Hanner polytope. Any Hanner polytope is a perfect prismatoid (but not vice versa). A 0/1-polytope is a convex hull of some vertices of the d-dimensional unit cube. We prove that every perfect prismatoid is affinely equivalent to some 0/1-polytope of the same dimension. (And therefore every perfect prismatoid is a lattice polytope.) Let Λ be a lattice in Rd and D be a polytope inscribed in a sphere B. Denote a boundary of B by ∂B and an interior of B by int B. The polytope D is a lattice Delaunay polytope if Λ∩int B = ∅ and D is a convex hull of Λ∩∂B. We prove that every perfect prismatoid is affinely equivalent to some lattice Delaunay polytope.

About the Authors

M. A. Kozachok
Steklov Mathematical Institute of Russian Academy of Sciences
Russian Federation

аспирант, Gubkina str. 8, Moscow, 119991, Russia



A. N. Magazinov
Steklov Mathematical Institute of Russian Academy of Sciences
Russian Federation
аспирант, Gubkina str. 8, Moscow, 119991, Russia


References

1. Dutour M. The six-dimensional Delaunay polytopes, European Journal of Combinatorics. 2004. 25:4. P. 535–548.

2. Erdahl R.M., Ryshkov S.S. The empty sphere I // Canad. J. Math. 1987. 39:4. P. 794–824.

3. Erdahl R.M., Ryshkov S.S. The empty sphere II // Canad. J. Math. 1988. 40:5. P. 1058–1073.

4. Hanner O. Intersections of translates of convex body // Math. Scand. 1956. 4. P. 67–89.

5. Kalai G. The Number of Faces of Centrally-symmetric Polytopes // Graphs and Combinatorics. 1989. 5. P. 389–391.

6. Sanyal R., Werner A., Ziegler G. On Kalai’s conjectures about centrally symmetric polytopes // Discrete Comput. Geometry. 2009. 41. P. 183–198.

7. Vorono¨ı G.F. Nouvelles applications des param`etres continus `a l`a th´eorie des formes quadratiques. Deuxi`eme M´emoire: Recherches sur les parall´elloedres primitifs // J. f¨ur die reine und angewandte Mathematik. 1908. 134. P. 198–287; 1909. 136. P. 67–181.

8. Барановский Е.П. Условия, при которых симплекс 6-мерной решетки является L-симплексом // Науч. тр. Иван. гос. ун-та. Математика. 1999. Вып. 2. C. 18–24. [Baranovskiy E.P. Usloviya, pri kotorykh simpleks 6-mernoy reshetki yavlyaetsya Lsimpleksom // Nauch. tr. Ivan. gos. un-ta. Matematika. 1999. Vyp. 2. S. 18–24 (in Russian)].

9. Делоне Б.Н. Геометрия положительных квадратичных форм // УМН. 1937. Вып. 3. C. 16–62 [Delone B.N. Geometriya polozhitelnykh kvadratichnykh form // UMN. 1937. Vyp. 3. S. 16–62 (in Russian)].

10. Козачок М.А. Совершенные призмоиды и гипотеза о минимальном числе граней центрально-симметричных многогранников // Модел. и анализ информ. систем. 2012. Т. 19, №6. C. 137–147 [Kozachok M.A. Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes // Modeling and analysis of information systems. 2012. T. 19, №6. S. 137–147 (in Russian)].


Review

For citations:


Kozachok M.A., Magazinov A.N. Perfect Prismatoids are Lattice Delaunay Polytopes. Modeling and Analysis of Information Systems. 2014;21(4):47-53. (In Russ.) https://doi.org/10.18255/1818-1015-2014-4-47-53

Views: 943


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)