Preview

Modeling and Analysis of Information Systems

Advanced search

On the Lassak Conjecture for a Convex Body

Abstract

In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axis. The paper contains a new proof of this statement for n = 2. Also we show that if a translate of $[0,1]^n$ can be inscribed into the n-dimensional simplex, then for this simplex holds $\sum_{i=1}^n \frac{1}{\omega_i} = 1$.

About the Author

M. V. Nevskii
Ярославский государственный университет им. П.Г. Демидова
Russian Federation


References

1. Невский М. B. Об одном свойстве n-мерного симплекса // Матем. заметки. 2010. Т. 87, № 4. С. 580-593.

2. Nevskii M. Properties of axial diameters of a simplex // Discrete Comput. Geom. 2011. V. 46, №2. P. 301-312.

3. Lassak M. Relationships between widths of a convex body and of an inscribed parallelotope // Bull. Austral. Math. Soc. 2001. V. 63. P. 133-140.

4. Lassak M. Approximation of convex bodies by rectangles // Geom. Dedic. 1993. V. 47. P. 111-117.

5. Scott P. R. Lattices and convex sets in space // Quart. J. Math. Oxford. 1985. V. 36, № 2. P. 359-362.


Review

For citations:


Nevskii M.V. On the Lassak Conjecture for a Convex Body. Modeling and Analysis of Information Systems. 2011;18(3):5-11. (In Russ.)

Views: 513


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)