Countable Additivity of Spreading the Differentiation Operator
https://doi.org/10.18255/1818-1015-2014-3-81-90
Abstract
In this article, we continue the study of the properties acquired by the differentiation operator Λ with spreading beyond the space W1¹. The study is conducted by introducing the family of spaces Yp¹ , 0 < p < 1, having analogy with the family Wp¹, 1 ≤ p < ∞. Spaces Yp¹ are equiped with quasinorms constructed on quasinorms spaces Lp as the basis; Λ : Yp¹ → Lp. We have given a sufficient condition for a function, piecewise belonging to the space Yp¹ to be in this space (if f ∈ Yp¹ [xi-1; xi ], i ∈ N, 0 = x0 < x1 < · · · < xi < · · · < 1, then f ∈ Yp¹ [0; 1]). In other words, it is the sign when the equality: Λ(S fi) = S Λ(fi) is true. The bounded variation in the Jordan sense is closest to the sufficient condition among the classic characteristics of functions. As a corollary, it comes out that, if a function f piecewise belongs to the space of W1¹ and has a bounded variation, f belongs to each space Yp¹ , 0 < p < 1.
About the Author
A. N. MorozovRussian Federation
канд. физ.-мат. наук, доцент, Sovetskaya str., 14, Yaroslavl, 150000, Russia
References
1. Морозов А.Н. Кусочно-полиномиальные приближения и дифференцируемость в пространствах Lp (0 < p < 1) //Модел. и анализ информ. систем. 2005. Т. 12, № 1. С. 18—21. [Morozov A.N. Kusochno-polinomialnye priblizheniay i differentsiruemost v prostranstvakh Lp (0 < p < 1) // Model. i analiz inform. system. 2005. T. 12, № 1. S. 18—21 (in Russian)].
2. Морозов А.Н. О гладкости в Lp, 0 < p < 1 // Модел. и анализ информ. систем. 2012. Т. 19, № 3. С. 97—104. (Morozov A.N. On Smoothness in Lp, 0 < p < 1 // Modeling and analysis of inform. systems. 2012. T. 19, № 3. S. 97—104 [in Russian]).
3. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука, 1984. (English transl.: Kantorovich L.V., Akilov G.P. Functional analysis /translated by Howard L. Silcock. Oxford, New York: Pergamon Press, 1982.)
4. Berg J., Lofsrom J. Interpolation Spaces. An Introduction. Springer-Verlag. 1976. (Russian transl.: Берг Й., Лёфстрём Й. Интерполяционные пространства. Введение /пер. с англ. Крючкова В.С. и Лизоркина П.И. М.: Мир, 1980.)
5. Тиман А.Ф. Теория приближения функций действительного переменного. М.: Физматлит, 1960. (English transl.: Timan A.F. Theory of Approximation of Functions of a Real Variable. Courier Dover Publications, 1994.)
Review
For citations:
Morozov A.N. Countable Additivity of Spreading the Differentiation Operator. Modeling and Analysis of Information Systems. 2014;21(3):81-90. (In Russ.) https://doi.org/10.18255/1818-1015-2014-3-81-90