On Some Problem for a Simplex and a Cube in Rⁿ
https://doi.org/10.18255/1818-1015-2013-3-77-85
Abstract
Let S be a nondegenerate simplex in Rⁿ. Denote by α(S) the minimal σ > 0 such that the unit cube Qn:= [0, 1]ⁿ is contained in a translate of σS. In the case α(S) ≠ 1 the translate of α(S)S containing Qn is a homothetic copy of S with the homothety center at some point x ∈ Rⁿ . We obtain the following computational formula for x. Denote by x (j) (j = 1, . . . , n+ 1) the vertices of S. Let A be the matrix of order n+ 1 with the rows consisting of the coordinates of x (j) ; the last column of A consists of 1’s. Suppose that A−1 = (lIj ). Then the coordinates of x are the numbers
xk = Pn+1 j=1 ( Pn i=1 |lij |) x (j) k − 1 Pn i=1 Pn+1 j=1 |lij | − 2 (k = 1, . . . , n).
Since α(S) ≠ 1, the denominator from the right-hand part of this equality is not equal to zero. Also we give the estimates for norms of projections dealing with the linear interpolation of continuous functions defined on Qn.
About the Author
M. V. NevskiiRussian Federation
канд. физ.-мат. наук, доцент, декан математического факультета,
Sovetskaya str., 14, Yaroslavl, 150000, Russia
References
1. Невский М. В. Минимальные проекторы и максимальные симплексы // Модел. и анализ информ. систем. 2007. Т. 14, № 1. С. 3–10. (Nevskij M. V. Minimal projections and largest simplices // Modeling and Analysis of Information Systems. 2007. V. 14, № 1. P. 3–10 [in Russian]).
2. Невский М. В. Об одном свойстве n-мерного симплекса // Матем. заметки. 2010. Т. 87, № 4. С. 580–593. (English transl.: Nevskii M. V. On a property of n-dimensional simplices // Math. Notes. 2010. V. 87, № 4. P. 543–555.)
3. Невский М. В. Об осевых диаметрах выпуклого тела // Матем. заметки. 2011. Т. 90, № 2. С. 313–315. (English transl.: Nevskii M. V. On the axial diameters of a convex body // Math. Notes. 2011. V. 90, № 2. P. 295–298.)
4. Невский М. В. Геометрические оценки в полиномиальной интерполяции / Яросл. гос. ун-т им. П. Г. Демидова. Ярославль: ЯрГУ, 2012. 218 с. (Nevskii M. V. Geometricheskie ocenki v polinomialnoi interpolyacii / P. G. Demidov Yarosl. Gos. Univ. Yaroslavl: YarGU, 2012. 218 s. [in Russian]).
5. Невский М. В. О минимальном положительном гомотетическом образе симплекса, содержащем выпуклое тело // Матем. заметки. 2013. Т. 93, № 3. С. 448–456. (English transl.: Nevskii M. V. On the minimal positive homothetic image of a simplex containing a convex body // Math. Notes. 2013. V. 93, № 3. P. 112–120.)
6. Hudelson M., Klee V., Larman D. Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem // Linear Algebra Appl. 1996. V. 241–243. P. 519–598.
7. Nevskii M. Properties of axial diameters of a simplex // Discrete Comput. Geom. 2011. V. 46, № 2. P. 301–312.
8. Scott P. R. Lattices and convex sets in space // Quart. J. Math. Oxford (2). 1985. V. 36. P. 359–362.
9. Scott P. R. Properties of axial diameters // Bull. Austral. Math. Soc. 1989. V. 39. P. 329–333.
Review
For citations:
Nevskii M.V. On Some Problem for a Simplex and a Cube in Rⁿ. Modeling and Analysis of Information Systems. 2013;20(3):77-85. (In Russ.) https://doi.org/10.18255/1818-1015-2013-3-77-85