Preview

Modeling and Analysis of Information Systems

Advanced search

BIFURCATION TO CHAOS IN THE СOMPLEX GINZBURG–LANDAU EQUATION WITH LARGE THIRD-ORDER DISPERSION

https://doi.org/10.18255/1818-1015-2015-3-327-336

Abstract

We give an analytic proof of the existence of Shilnikov chaos in complex Ginzburg– Landau equation subject to a large third-order dispersion perturbation.

About the Authors

I. I. Ovsyannikov
Lobachevsky University of Nizhny Novgorod; Universitat Bremen, Germany Jacobs University
Russian Federation


D. V. Turaev
Imperial College, London
United Kingdom


S. V. Zelik
University of Surrey Guildford
United Kingdom


References

1. Afraimovich V. S., Gonchenko S. V., Lerman L., Shilnikov A., Turaev D., “Scientific heritage of L.P.Shilnikov”, Regul. Chaotic Dyn., 19 (2014), 435–460.

2. Arneodo A., Coullet P. H., Spiegel E. A., Tresser C., “Asymptotic Chaos”, Physica D, 14 (1985), 327–347.

3. Arneodo A., Coullet P. H., Spiegel E. A., “The dynamics of triple convection”, Geophys. Astrophys. Fluid Dyn., 31 (1985), 1–48.

4. Ibanez S., Rodriguez J. A., “Shilnikov configurations in any generic unfolding of the nilpotent singularity of codimension three on R3”, J. Differential Equations, 208 (2005), 147–175.

5. Kostianko A., Titi E., Zelik S., Large dispersion, averaging, and attractors: three 1D paradigms, preprint, 2014.

6. Shilnikov L. P., “A case of the existence of a countable number of periodic motions”, Soviet Math. Dokl., 6 (1965), 163–166.

7. Shilnikov L. P., “A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type”, Math. USSR-Sb., 10 (1970), 91–102.

8. Turaev D., Zelik S., “Analytical proof of space-time chaos in Ginzburg–Landau Equations”, Discrete Contin. Dyn. Syst., 28 (2010), 1713–1751.


Review

For citations:


Ovsyannikov I.I., Turaev D.V., Zelik S.V. BIFURCATION TO CHAOS IN THE СOMPLEX GINZBURG–LANDAU EQUATION WITH LARGE THIRD-ORDER DISPERSION. Modeling and Analysis of Information Systems. 2015;22(3):327-336. https://doi.org/10.18255/1818-1015-2015-3-327-336

Views: 1368


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)