РЕШЕНИЕ ПАРАБОЛИЧЕСКОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ С ПОМОЩЬЮ ФОРМУЛЫ ФЕЙНМАНА – I


https://doi.org/10.18255/1818-1015-2015-3-337-355

Полный текст:


Аннотация

В работе рассматривается параболическое дифференциальное уравнение u′t (t, x) = Lu(t, x) в частных производных, где L – это линейный дифференциальный оператор второго порядка с коэффициентами, не зависящими от времени, но зависящими от x. Предполагается, что пространственная переменная x принадлежит конечномерному или бесконечномерному вещественному сепарабельному гильбертову пространству H.

Из существования сильно непрерывной полугруппы, разрешающей рассматриваемое уравнение, в статье выводится представление этой полугруппы в виде формулы Фейнмана, т.е. полугруппа записывается в форме предела кратного интеграла по H при стремящейся к бесконечности кратности. Это представление дает единственное решение задачи Коши для рассматриваемого уравнения в классе функций, являющихся равномерными пределами гладких цилиндрических функций на H. Более того, это решение непрерывно зависит от начального условия. Для случая, когда в операторе L коэффициент при первой производной равен нулю, в настоящей работе доказано, что а) сильно непрерывная разрешающая полугруппа существует (это влечет за собой существование единственного решения для задачи Коши в упомянутом выше классе функций) и б) это решение непрерывно зависит от коэффициентов уравнения.

Статья публикуется в авторской редакции. 


Об авторе

И. Д. Рeмизoв
Московский Государственный Технический Университет им. Н.Э. Баумана; Нижегородский государственный университет им. Н.И. Лобачевского
Россия

Рeмизoв Иван Дмитриевич, Нижегородский государственный университет им. Н.И. Лобачевского, младший научный сотрудник; Московский Государственный Технический Университет им. Н.Э. Баумана, ассистент 



Список литературы

1. Bogachev V. I., “Gaussian Measures”, Amer. Math. Soc., 1998.

2. Bogachev V. I., Smolyanov O. G., Real and functional analysis: university course (in Russian), RCD, M. Izevsk, 2009.

3. Butko Ya. A., “The Feynman-Kac-Ito formula for an infinite-dimensional Schr¨odinger equation with scalar and vector potentials”.

4. Butko Ya. A., “Feynman formula for semigroups with multiplicatevely perturbed generators”, Science and Education (ISSN 1994-0408), 10 (October 2011), 77305691/239563.

5. Daletsky Yu. L., Fomin S. V., Measures and differential equations in infinite-dimensional space, Kluwer, 1991.

6. Egorov A. D., Zidkov E. P., Lobanov Yu. Yu, Introduction to the theory and applications of the functional integration (in Russian), M. Fizmatlit, 2006.

7. Krylov N. V., “Lectures on Elliptic and Parabolic Equations in Holder Spaces”, AMS, Graduate Texts in Mathematics, 12 (1996).

8. Lobanov Yu. Yu, Methods of the approximate functional integrating for the numerical research in the quantum physics, Dr. Sci. dissertation thesis (in Russian), M., 2009. [9] Smolyanov O. G., Analysis on the topological linear spaces and its applications (in Russian), MSU, M., 1979.

9. Smolyanov O. G., Shavgulidze E. T., Continual integrals (in Russian), MSU, M., 1990.

10. Smolyanov O. G., Shamarov N. N., Kpekpassi M., “Feynman-Kac and Feynman Formulas for Infinite-Dimensional Equations with Vladimirov Operator”, Doklady Mathematics, 83:3 (2011), 389–393.

11. Smolyanov O. G., Shamarov N. N., “Hamiltonian Feynman formulas for equations containing the Vladimirov operator with variable coefficients”, Doklady Mathematics, 84:2, 689–694.

12. Schwartz L., Analyse mathematique, I. Hermann, 1967.

13. Luiz C. L. Botelho, “Non-linear diffusion in R

14. Butko Ya. A., Grothaus M., Smolyanov O. G., “Lagrangian Feynman formulas for secondorder parabolic equations in bounded and unbounded domains”, Infinite Dimansional Analyasis, Quantum Probability and Related Topics, 13:3 (2010), 377–392.

15. Yana A. Butko, Ren´e L. Schilling, Smolyanov Oleg G., “Lagrangian and Hamiltonian Feynman formulae for some Feller semigroups and their perturbations”, arXiv: http://arxiv.org/abs/1203.1199v1.

16. Cartan H., Differential Calculus, Kershaw Publishing Company, 1971.

17. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.

18. Plyashechnik A. S., “Feynman formula for Schr¨odinger-Type equations with timeand space-dependent coefficients”, Russian Journal of Mathematical Physics, 19:3 (2012), 340–359.

19. Plyashechnik A. S., “Feynman formulas for second-order parabolic equations with variable coefficients”, Russian Journal of Mathematical Physics, 20:3 (2013), 377–379.

20. G. Da Prato, Introduction to infinite-dimensional analysis, Springer, 2006.

21. G. Da Prato, Zabczyk J., “Second Order Partial Differential Equations in Hilbert Spaces”, London Mathematical Society Lecture Notes Series, 293 (2004).

22. Fernique X., “Int´egrabilit´e des vecteurs gaussiens”, S´er. A-B 270: A1698–A1699, C. R. Acad. Sci., Paris.

23. Feynman R. P., “Space-time approach to nonrelativistic quantum mechanics”, Rev. Mod. Phys., 20 (1948), 367–387.

24. Feynman R. P., “An operation calculus having applications in quantum electrodynamics”, Phys. Rev., 84 (1951), 108–128.

25. Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.

26. Dieudonn´e J., Foundations of modern analysis, Academic Press, New York and London, 1969.

27. Remizov I. D., “Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula”, Russian Journal of Mathematical Physics, 19:3 (2012), 360–372.

28. Orlov Yu. N., Sakbaev V. Zh., Smolyanov O. G., “Feynman formulas as a method of averaging random Hamiltonians”, Proceedings of the Steklov Institute of Mathematics, 285:1 (August 2014), 222–232.

29. Simon B., Functional Integration and Quantum Physics, Academic Press, 1979.

30. Smolyanov O. G., Tokarev A. G., Truman A., “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171.

31. Remizov I. D., The latest version of the preprint, arXiv: http://arxiv.org/abs/1409.8345.

32. Smolyanov O. G., “Feynman formulae for evolutionary equations”, London Mathematical Society Lecture Notes Series, 353, 2009.

33. Kuo H.-S., “Gaussian measures in Banach space”, Lecture notes in mathematics, 463 (1975).

34. Paul R. Chernoff, “Note on product formulas for operator semigroups”, J. Functional Analysis 2, 1968, 238–242.

35. Smolyanov O. G., Weizs¨acker H. V., Wittich O., “Chernoff’s Theorem and Discrete Time Approximations of Brownian Motion on Manifolds”, Potential Analysis, 26:1 (February 2007), 1–29.

36. Butko Ya. A., “Feynman formulae for evolution semigroups (in Russian)”, Electronic scientific and technical periodical ”Science and education”, 2014, № 3, 95–132.


Дополнительные файлы

Для цитирования: Рeмизoв И.Д. РЕШЕНИЕ ПАРАБОЛИЧЕСКОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ С ПОМОЩЬЮ ФОРМУЛЫ ФЕЙНМАНА – I. Моделирование и анализ информационных систем. 2015;22(3):337-355. https://doi.org/10.18255/1818-1015-2015-3-337-355

For citation: Remizov I.D. SOLUTION TO A PARABOLIC DIFFERENTIAL EQUATION IN HILBERT SPACE VIA FEYNMAN FORMULA I. Modeling and Analysis of Information Systems. 2015;22(3):337-355. https://doi.org/10.18255/1818-1015-2015-3-337-355

Просмотров: 403

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)