Preview

Modeling and Analysis of Information Systems

Advanced search

Local Bifurcations Analysis of a State-Dependent Delay Differential Equation

https://doi.org/10.18255/1818-1015-2015-5-711-722

Abstract

In this paper, a first-order equation with state-dependent delay and with a nonlinear right-hand side is considered. Conditions of existence and uniqueness of the solution of initial value problem are
supposed to be executed. The task is to study the behavior of solutions of the considered equation in a small neighborhood of its zero equilibrium. Local dynamics depends on real parameters which are coefficients of equation right-hand side decomposition in a Taylor series. The parameter which is a coefficient at the linear part of this decomposition has two critical values which determine a stability domain of zero equilibrium. We introduce a small positive parameter and use the asymtotic method of normal forms in order to investigate local dynamics modifications of the equation near each two critical values. We show that the stability exchange bifurcation occurs in the considered equation near the first of these critical values, and the supercritical Andronov – Hopf bifurcation occurs near the second of them (if the sufficient condition is executed). Asymptotic decompositions according to correspondent small parameters are obtained for each stable solution. Next, a logistic equation with state-dependent delay is considered as an example. The bifurcation parameter of this equation has one critical value. A simple sufficient condition of Andronov – Hopf bifurcation occurence in the considered equation near a critical value is obtained as a result of applying the method of normal forms.

About the Author

V. O. Golubenets
Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
Russian Federation
undergraduate student


References

1. Валентайн Р.С., “Экономичность, устойчивость и работоспособность ЖРД”, Вопросы ракетной техники, 1:217 (1973); [Valentayn R. S., “Ekonomichnost, ustoychivost i rabotosposobnost ZhRD”, Voprosy raketnoy tekhniki, 1:217 (1973), (in Russian).]

2. Sabersky R. H., “Effect of wave propagation in feed lines on low frequency rocket instability”, Jet Propulsion, 24:172 (1964).

3. Crocco L., Harrje D. T., Reardon F. H., “Transverse combustio instability in liquid propellant rocket motors”, ARS Journal, 32:3 (1962).

4. Reardon F. H., Crocco L., Harrje D. T., “Velocity effects in transverse mode liquid propellant rocket combustion instability”, AIAA Journal, 2:9 (1964).

5. Колесов Ю.С., Швитра Д.И., “Математическое моделирование процесса горения в камере жидкостного ракетного двигателя”, Литовский математический сборник, 15:4 (1975); [Kolesov Yu. S., Shvitra D. I., “Matematicheskoe modelirovanie protsessa goreniya v kamere zhidkostnogo raketnogo dvigatelya”, Litovskiy matematicheskiy sbornik, 15:4 (1975), (in Russian).]

6. Zager M. G., Schlosser P. M., Tran H. T., “A delayed nonlinear PBPK model for genistein dosimetry in rats”, Bulletin of Mathematical Biology, 69 (2007), 93–117.

7. Hu Q., Wu J., “Global Hopf bifurcation for differential equations with state-dependent delay”, Journal of Differential Equations, 248:12 (2010), 2801–2840.

8. Brokate M., Colonius F., “Linearizing equations with state-dependent delays”, Appl. Math. Optim., 21 (1990), 45–52.

9. Cooke K. L., Huang W. Z., “On the problem of linearization for state-dependent delay differential equations”, Proc. Amer. Math. Soc., 124:5 (1996), 1417–1426.

10. Hartung F., Turi J., “On differentiability of solutions with respect to parameters in state-dependent delay equations”, J. Differential Equations, 135 (1997), 192–237.

11. Driver R. D., “Existence theory for a delay-differential system”, Contrib. Different. Equat., 1:3 (1963).

12. Эльсгольц Л.Э., Норкин С.Б., Введение в теорию дифференциальных уравнений с отклоняющимся аргументом, Наука, М., 1971; English transl.: Elsgolts L. E., Norkin S. B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, 1973.

13. Halanay A., Yorke J., “Some new results and problems in the theory of differential-delay equations”, SIAM Rev., 13:1 (1971).

14. Кащенко И.С., Кащенко С.А., “Локальная динамика уравнения с большим запаздыванием, зависящим от искомой функции”, Доклады академии наук, 464:5 (2015), 521–524; English transl.: Kashchenko I. S., Kashchenko S. A., “Local Dynamics of an Equation with a Large State Dependent Delay”, Doklady Mathematics, 92:2 (2015), 1–4.

15. Кащенко С.А., “Асимптотика решений обобщенного уравнения Хатчинсона”, Моделирование и анализ информационных систем, 19:3 (2012), 32; English transl.: Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sciences, 47:7 (2013), 470–494.

16. Кащенко Д.С., Кащенко И.С., Динамика уравнений первого порядка с запаздыванием: учебное пособие, Ярославль, 2006; [Kashchenko D. S., Kashchenko I. S., Dinamika uravneniy pervogo poryadka s zapazdyvaniem: uchebnoe posobie, Yaroslavl, 2006, (in Russian).]

17. Брюно А.Д., Локальный метод нелинейного анализа дифференциальных уравнений, Наука, М., 1979; English transl.: Bryuno A. D., Local Methods in Nonlinear Differential Equations, Springer, 1989.

18. Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980.

19. Hartman P., Ordinary Differential Equations, Society for Industrial and Applied Mathematics, 2002.

20. Yang Kuang, Delay Differential Equations, With Applications in Population Dynamics, Academic Press, 1993.


Review

For citations:


Golubenets V.O. Local Bifurcations Analysis of a State-Dependent Delay Differential Equation. Modeling and Analysis of Information Systems. 2015;22(5):711-722. (In Russ.) https://doi.org/10.18255/1818-1015-2015-5-711-722

Views: 1246


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)