Preview

Modeling and Analysis of Information Systems

Advanced search

On Algebraic Cycles on Fibre Products of Non-isotrivial Families of Regular Surfaces with Geometric Genus 1

https://doi.org/10.18255/1818-1015-2016-4-440-465

Abstract

Let      ) be a projective family of surfaces (possibly with degenerations) over a smooth projective curve  . Assume that the discriminant loci       are disjoint,          for any smooth fibre     and the period map associated with the variation of Hodge structures         (where             is a smooth part of the morphism    ), is non-constant. If for generic geometric fibres     and     the following conditions hold: (i)         is an odd integer; (ii)              , then for any smooth projective model   of the fibre product         the Hodge conjecture on algebraic cycles is true. If, besides, the morphisms     are smooth,           are odd prime numbers and      , then for

Keywords


About the Author

O. V. Nikol’skaya
A.G. and N.G. Stoletov Vladimir State University, Vladimir
Russian Federation

Nikol’skaya Olga Vladimirovna, PhD

A.G. and N.G. Stoletov Vladimir State University, Gorky str., 87, Vladimir, 600000



References

1. Hodge W. V. D., “The topological invariants of algebraic varieties”, Proceedings of International Congress of Mathematicians, 1 (1952), 182–192.

2. Tankeev S. G., “Cycles on simple abelian varieties of prime dimension”, Mathematics of the USSRIzvestiya, 20:1 (1983), 157–171. DOI: 10.1070/IM1983v020n01ABEH001345.

3. Gordon B. B., “A survey of the Hodge conjecture for Abelian varieties, Appendix in: J.D. Lewis”, A survey of the Hodge conjecture, 10, Second edition, CRM Monograph Series, American Mathematical Society, Providence, RI, 1999, 297–356.

4. Nikolskaya O. V., “On algebraic cycles on a fibre product of families of K3 surfaces”, Izv. Math., 77:1 (2013), 143–162. DOI: 10.1070/IM2013v077n01ABEH002631.

5. Nikolskaya O. V., “On the geometry of a smooth model of a fibre product of families of K3 surfaces”, Sbornik: Mathematics, 205:2 (2014), 269–276. DOI: 10.1070/SM2014v205n02ABEH004374.

6. Nikolskaya O. V., “On algebraic cohomology classes on a smooth model of a fiber product of families of K3 surfaces”, Math. Notes, 96:5 (2014), 745–752. DOI: 10.1134/S0001434614110133.

7. Grothendieck A., “Standard conjectures on algebraic cycles”, Algebraic Geometry, Oxford University Press, London, 1969, 193–199, Internatioal Colloguium (Bombay, 1968).

8. Lieberman D. I., “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374. DOI: 10.2307/2373533

9. Tankeev S. G., “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062. DOI: 10.1070/IM2011v075n05ABEH002563.

10. Charles F., Markman E., “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert shemes of K3 surfaces”, Compos. Math., 149:3 (2013), 481–494. DOI: 10.1112/S0010437X12000607.

11. Tankeev S. G., “On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of Neron minimal models”, Izv. Math., 78:1 (2014), 169–200. DOI: 10.1070/IM2014v078n01ABEH002684.

12. Deligne P., “Travaux de Griffiths”, S´eminaire Bourbaki 1969/70, Expos´e 376,, Heidelberg, Benjaminn, New York, 1971, 213–235.

13. Griffiths Ph. A., “Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems”, Bull. Amer. Math. Soc., 76:2 (1970), 228–296. DOI: 10.1090/S0002-9904-1970-12444-2.

14. Griffiths Ph. A., “A transcendental method in algebraic geometry”, Actes du Congr´es int´ernational des math´ematiciens (Nice, 1970), 1 (1971), 113–119.

15. Schmid W., “Variation of Hodge structure: the singularities of the period mapping”, Invent. math., 22 (1973), 211–319. DOI: 10.1007/BF01389674.

16. Morrison D. R., “On the moduli of Todorov surfaces”, Algebraic geometry and commutative algebra in honor of Masayoshi Nagata, Kinokuniya C. Ltd., 1988, 313–356.

17. Pignatelli R., “Some (big) irreducible components of the moduli space of minimal surfaces of general type with pg = q = 1 and K2 = 4”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 20:3 (2009), 207–226. DOI: 10.4171/RLM/544.

18. Moonen B., “On the Tate and Mumford Tate conjectures in codimension one for varieties with h 2,0 = 1”, arXiv: 1504.05406v1, 21 Apr 2015, 1–45.

19. Zarhin Yu. G., “Hodge groups of K3 surfaces”, Journal f¨ur die reine und angewandte Mathematik, 341 (1983), 193–220.

20. Bourbaki N., Groupes et alg`ebres de Lie, Chaps. 1–8, Actualit´es Sci. Indust., nos. 1285, 1349, 1337, 1364, Hermann, Paris, 1971, 1972, 1968, 1975.

21. Mustafin G. A., “Families of algebraic varieties and invariant cycles”, Mathematics of the USSR-Izvestiya, 27:2 (1986), 251–278. DOI: 10.1070/IM1986v027n02ABEH001177.

22. Bourbaki N., El´ements de math´ematique. Alg`ebre, ´ Ch. IX, Formes sesquilineares et formes quadratiques, Hermann, Paris, 1959.

23. Helgason S., Differential geometry and symmetric spaces, Academic Press, New York and London, 1962.

24. Zarhin Yu. G., “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSRIzv., 24:2 (1985), 245–281. DOI: 10.1070/IM1985v024n02ABEH001230.

25. Tankeev S. G., “Monoidal transformation and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655. DOI: 10.1070/IM2007v071n03ABEH002370.

26. Tankeev S. G., “The arithmetic and geometry of a generic hypersurface section”, Izv. Math., 66:2 (2002), 393– 424. DOI: 10.1070/IM2002v066n02ABEH000383.

27. Kempf G. et al., Toroidal embeddings, I. Lecture Notes in Mathematics, 339, SpringerVerlag, Berlin New York, 1973, 209 pp.

28. Tankeev S. G., “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635. DOI: 10.1070/IM2003v067n03ABEH000439.

29. Deligne P., “Th´eorie de Hodge. II”, Inst. Hautes Etudes Sci. Publ. Math. ´ , 40 (1971), 5–57. DOI: 10.1007/BF02684692.

30. Zucker S., “Hodge theory with degenerating coefficients: L2 cohomology in the Poincar´e metric”, Ann. Math. (2), 109:3 (1979), 415–476. DOI: 10.2307/1971221.

31. Tankeev S. G., “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 167–187. DOI: 10.1070/IM2010v074n01ABEH002484.

32. Deligne P., “Th´eorie de Hodge. III”, Inst. Hautes Etudes Sci. Publ. Math. ´ , 44 (1974), 5–77.

33. Okamoto M., “On a certain decomposition of 2-dimensional cycles on a product of two algebraic surfaces”, Proceeding of Japan Academy, Series A, 57:6 (1981), 321–325. DOI: 10.3792/pjaa.57.321.

34. Shimura G., “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176. DOI: 10.2307/2372425.

35. Kleiman S. L., “Algebraic cycles and the Weil conjectures”, Dix expos´es sur la cohomologie des sch´emas, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386.


Review

For citations:


Nikol’skaya O.V. On Algebraic Cycles on Fibre Products of Non-isotrivial Families of Regular Surfaces with Geometric Genus 1. Modeling and Analysis of Information Systems. 2016;23(4):440-465. (In Russ.) https://doi.org/10.18255/1818-1015-2016-4-440-465

Views: 1111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)