Preview

Modeling and Analysis of Information Systems

Advanced search

On n-Dimensional Simplices Satisfying Inclusions S ⊂ [0, 1]n ⊂ nS

https://doi.org/10.18255/1818-1015-2017-5-578-595

Abstract

Let  \(n\in{\mathbb N}\),  \(Q_n=[0,1]^n.\) For a nondegenerate simplex  \(S\subset {\mathbb R}^n\), by  \(\sigma S\) we denote the homothetic image of  \(S\) with the center of homothety in the center of gravity of  \(S\) and ratio of homothety  \(\sigma\). By  \(d_i(S)\)  we mean the  \(i\)-th axial diameter of  \(S\), i.e. the maximum length of a line segment in  \(S\) parallel to the  \(i\)th coordinate axis. Let  \(\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\},\)  \(\xi_n=\min \{ \xi(S): \, S\subset Q_n \}.\) By  \(\alpha(S)\) we denote the minimal  \(\sigma>0\) such that  \(Q_n\) is contained in a translate of simplex  \(\sigma S\). Consider  \((n+1)\times(n+1)\)-matrix  \({\bf A}\) with the rows containing coordinates of vertices of  \(S\); the last column of  \({\bf A}\) consists of 1's. Put  \({\bf A}^{-1}\)  \(=(l_{ij})\). Denote by  \(\lambda_j\) a linear function on  \({\mathbb R}^n\) with coefficients from the  \(j\)-th column of  \({\bf A}^{-1}\), i.\,e.  \(\lambda_j(x)= l_{1j}x_1+\ldots+ l_{nj}x_n+l_{n+1,j}.\) Earlier, the first author proved the equalities  \( \frac{1}{d_i(S)}=\frac{1}{2}\sum_{j=1}^{n+1} \left|l_{ij}\right|, \ \alpha(S) =\sum_{i=1}^n\frac{1}{d_i(S)}.\) In the present paper, we consider the case  \(S\subset Q_n\). Then all the  \(d_i(S)\leq 1\), therefore,  \(n\leq \alpha(S)\leq \xi(S).\) If for some simplex  \(S^\prime\subset Q_n\) holds  \(\xi(S^\prime)=n,\) then  \(\xi_n=n\),   \(\xi(S^\prime)=\alpha(S^\prime)\), and  \(d_i(S^\prime)=1\). However, such simplices  \(S^\prime\) do not exist for all the dimensions  \(n\). The first value of  \(n\) with such a property is equal to  \(2\). For each 2-dimensional simplex,  \(\xi(S)\geq \xi_2=1+\frac{3\sqrt{5}}{5}=2.34 \ldots>2\). We have an estimate  \(n\leq \xi_n<n+1\). The equality  \(\xi_n=n\) takes place if there exists an Hadamard matrix of order  \(n+1\). Further study showed that  \(\xi_n=n\) also for some other  \(n\). In particular, simplices with the condition  \(S\subset Q_n\subset nS\) were built for any odd  \(n\)  in the interval  \(1\leq n\leq 11\). In the first part of the paper, we present some new results concerning simplices with such a condition. If  \(S\subset Q_n\subset nS\), the center of gravity of  \(S\) coincide, with the center of  \(Q_n\). We prove that  \(\sum_{j=1}^{n+1} |l_{ij}|=2 \quad (1\leq i\leq n), \ \sum_{i=1}^{n} |l_{ij}|=\frac{2n}{n+1} \  (1\leq j\leq n+1).\) Also we give some corollaries. In the second part of the paper, we consider the following conjecture. { Let for simplex  \(S\subset Q_n\) an equality  \(\xi(S)=\xi_n\) holds. Then  \((n-1)\)-dimensional hyperplanes containing the faces of  \(S\) cut from the cube  \(Q_n\) the equal-sized parts. Though it is true for  \(n=2\) and  \(n=3\), in the general case this conjecture is not valid.

About the Authors

Mikhail V. Nevskii
P.G. Demidov Yaroslavl State University
Russian Federation
doctor of science


Alexey Y. Ukhalov
P.G. Demidov Yaroslavl State University
Russian Federation
PhD


References

1. Klimov V. S., Ukhalov A. Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki, P. G. Demidov Yaroslavl State University, Yaroslavl, 2014, 96 pp., (in Russian).

2. Malyshev F. M., “Family of equal-sized n-dimensional polyhedra satisfying Cavalieri’s principle”, Math. Notes, 97:1 (2015), 213–229.

3. Nevskij M. V., “Inequalities for the norms of interpolating projections”, Modeling and Analysis of Information Systems, 15:3 (2008), 28–37, (in Russian).

4. Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43, (in Russian).]

5. Nevskii M. V., “On a property of n-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555.

6. Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012, (in Russian).

7. Nevskii M. V., “Computation of the longest segment of a given direction in a simplex”, Journal of Math. Sciences, 203:6 (2014), 851–854.

8. Nevskii M. V., Ukhalov A. Yu., “On numerical charasteristics of a simplex and their estimates”, Modeling and Analysis of Information Systems, 23:5 (2016), 602–618, (in Russian).

9. Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Modeling and Analysis of Information Systems, 24:1 (2017), 94–110, (in Russian).

10. Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets) – Toronto – London, 1967, (in English).

11. Frank R., Riede H., “Hyperplane sections of the n-dimensional cube”, Amer. Math. Monthly, 119:10 (2012), 868–872.

12. Hudelson M., Klee V., Larman D., “Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241 –243 (1996), 519 – 598.

13. Lassak M., “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462.

14. Mangano S., Mathematica cookbook, O’Reilly Media Inc., Cambridge, 2010.

15. Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312.

16. Scott P. R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362.

17. Scott P. R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333.


Review

For citations:


Nevskii M.V., Ukhalov A.Y. On n-Dimensional Simplices Satisfying Inclusions S ⊂ [0, 1]n ⊂ nS. Modeling and Analysis of Information Systems. 2017;24(5):578-595. (In Russ.) https://doi.org/10.18255/1818-1015-2017-5-578-595

Views: 1032


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)