Preview

Modeling and Analysis of Information Systems

Advanced search

Doubly Periodic Meromorphic Solutions of Autonomous Nonlinear Differential Equations

https://doi.org/10.18255/1818-1015-2014-5-49-60

Abstract

The problem of constructing and classifying elliptic solutions of nonlinear differential equations is studied. An effective method enabling one to find an elliptic solution of an autonomous nonlinear ordinary differential equation is described. The method does not require integrating additional differential equations. Much attention is paid to the case of elliptic solutions with several poles inside a parallelogram of periods. With the help of the method we find elliptic solutions up to the fourth order inclusively of an ordinary differential equation with a number of physical applications. The method admits a natural generalization and can be used to find elliptic solutions satisfying systems of ordinary differential equations.

About the Authors

M. V. Demina
National Research Nuclear University MEPhI
Russian Federation
доктор физико-математических наук, профессор, заведующий кафедрой прикладной математики; Kashirskoe shosse, 31, Moscow, 115409, Russia


N. A. Kudryashov
National Research Nuclear University MEPhI
Russian Federation
кандидат физико-математических наук, доцент кафедры прикладной математики; Kashirskoe shosse, 31, Moscow, 115409, Russia


References

1. Kudryashov N.A. Exact soliton solutions of the generalized evolution equation of wave dynamics // Journal of Applied Mathematics and Mechanics. 1988. Vol. 52(3). P. 360–365.

2. Kudryashov N.A. Exact solutions of the generalized Kuramoto–Sivashinsky equation // Phys. Lett. A. 1990. Vol. 147. P. 287–291.

3. Kudryashov N.A. On types of nonlinear nonintegrable differential equations with exact solutions // Phys. Lett. A. 1991. Vol. 155. P. 269–275.

4. Kudryashov N.A. Partial differential equations with solutions having movable first – order singularities // Phys. Lett. A. 1992. Vol. 169. P. 237–242.

5. Parkes E.J., Duffy B.R., Abbott P.C. The Jacobi elliptic–function method for finding periodic–wave solutions to nonlinear evolution equations // Phys. Lett. A. 2002. Vol. 295. P. 280–286.

6. Fu Z., Liu S., Liu S. New transformations and new approach to find exact solutions to nonlinear equations // Phys. Lett. A. 2002. Vol. 229. P. 507–512.

7. Vernov S.Yu. Constructing Solutions for the Generalized Henon-–Heiles System Through the Painleve Test // TMF. 2003. No. 135:3. P. 792–801.

8. Hone A.N.W. Non–existence of elliptic travelling wave solutions of the complex Ginzburg–Landau equation // Physica D. 2005. V. 205. P. 292–306.

9. Kudryashov N.A. Simplest equation method to look for exact solutions of nonlinear differential equations // Chaos, Solitons and Fractals. 2005. Vol. 24. P. 1217–1231.

10. Vernov S.Yu. Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation // TMF. 2006. No. 146:1. P. 131–139.

11. Chen Y., Yan Z. The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations // Chaos Solitons and Fractals. 2006. Vol. 29, No. 4. P. 948–964.

12. Kudryashov N.A., Loguinova N.B. Extended simplest equation method for nonlinear differential equations // Applied Mathematics and Computation. 2008. Vol. 205. P. 396–402.

13. Kudryashov N.A. On "new travelling wave solutions" of the KdV and the KdV–Burgers equations // Commun. Nonlinear. Sci. Numer. Simulat. 2009. Vol. 14. P. 1891–1900.

14. Kudryashov N.A., Loguinova N.B. Be careful with the Exp–function method // Commun. Nonlinear. Sci. Numer. Simulat. 2009. Vol. 14. P. 1881–1890.

15. Kudryashov N.A. Seven common errors in finding exact solutions of nonlinear differential equations // Commun. Nonlinear. Sci. Numer. Simulat. 2009. Vol. 14. P. 3507–3529.

16. Demina M.V., Kudryashov N.A. Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations // Commun. Nonlinear Sci. Numer. Simulat. 2011. Vol. 16. P. 1127–1134.

17. Demina M.V., Kudryashov N.A. From Laurent series to exact meromorphic solutions: The Kawahara equation // Phys. Lett. A. 2010. Vol. 374. P. 4023–4029.

18. Demina M.V., Kudryashov N.A. Elliptic solutions in the H´enon-Heiles model // Commun. Nonlinear Sci. Numer. Simulat. 2014. Vol. 19(3). P. 471–482.

19. Musette M., Conte R. Analytic solitary waves of nonintegrable equations // Physica D. 2003. Vol. 181. P. 70–79.

20. Conte R., Musette M. Elliptic general analytic solutions // Studies in Applied Mathematics. 2009. Vol. 123. P. 63–81.


Review

For citations:


Demina M.V., Kudryashov N.A. Doubly Periodic Meromorphic Solutions of Autonomous Nonlinear Differential Equations. Modeling and Analysis of Information Systems. 2014;21(5):49-60. (In Russ.) https://doi.org/10.18255/1818-1015-2014-5-49-60

Views: 832


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)