Algorithms
Let $G_{k}$ be defined as $G_{k} = \langle a, b;\ a^{-1}ba = b^{k} \rangle$, where $k \ne 0$. It is known that, if $p$ is some prime number, then $G_{k}$ is residually a finite $p$-group if and only if $p \mid k - 1$. It is also known that, if $p$ and $q$ are primes not dividing $k - 1$, $p < q$, and $\pi = \{p,\,q\}$, then $G_{k}$ is residually a finite $\pi$-group if and only if $(k, q) = 1$, $p \mid q - 1$, and the order of $k$ in the multiplicative group of the field $\mathbb{Z}_{q}$ is a $p$-number. This paper examines the question of the number of two-element sets of prime numbers that satisfy the conditions of the last criterion. More precisely, let $f_{k}(x)$ be the number of sets $\{p,\,q\}$ such that $p < q$, $p \nmid k - 1$, $q \nmid k - 1$, $(k, q) = 1$, $p \mid q - 1$, the order of $k$ modulo $q$ is a $p$\-number, and $p$, $q$ are chosen among the first $x$ primes. We state that, if $2 \leq |k| \leq 10000$ and $1 \leq x \leq 50000$, then, for almost all considered $k$, the function $f_{k}(x)$ can be approximated quite accurately by the function $\alpha_{k}x^{0.85}$, where the coefficient $\alpha_{k}$ is different for each $k$ and $\{\alpha_{k} \mid 2 \leq |k| \leq 10000\} \subseteq (0.28;\,0.31]$. We also investigate the dependence of the value $f_{k}(50000)$ on $k$ and propose an effective algorithm for checking a two-element set of prime numbers for compliance with the conditions of the last criterion. The results obtained may have applications in the theory of computational complexity and algebraic cryptography.
Computer System Organization
Computing Methodologies and Applications
Discrete Mathematics in Relation to Computer Science
Let $B$ be a Euclidean ball in ${\mathbb R}^n$ and let $C(B)$ be a space of continuos functions $f:B\to{\mathbb R}$ with the uniform norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ we mean a set of polynomials of degree $\leq 1$, i.e., a set of linear functions upon ${\mathbb R}^n$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in B$ is defined by the equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$, $j=1,\ldots, n+1$.The norm of $P$ as an operator from $C(B)$ to $C(B)$ can be calculated by the formula $\|P\|_B=\max_{x\in B}\sum |\lambda_j(x)|.$ Here $\lambda_j$ are the basic Lagrange polynomials corresponding to the $n$-dimensional nondegenerate simplex $S$ with the vertices $x^{(j)}$. Let $P^\prime$ be a projector having the nodes in the vertices of a regular simplex inscribed into the ball. We describe the points $y\in B$ with the property $\|P^\prime\|_B=\sum |\lambda_j(y)|$. Also we formulate some geometric conjecture which implies that $\|P^\prime\|_B$ is equal to the minimal norm of an interpolation projector with nodes in $B$. We prove that this conjecture holds true at least for $n=1,2,3,4$.
Theory of Computing
ISSN 2313-5417 (Online)